Generative Modeling with (W)GAN

Sean Welleck

NYU

wellecks@nyu.edu

April 2018

< ∃ > .

Generative Modeling

Model a probability distribution \mathbb{P}_r over a domain \mathcal{X} .

- \mathbb{P}_r typically high-dimensional
- Model's distribution: \mathbb{P}_{θ}

Model a probability distribution \mathbb{P}_r over a domain \mathcal{X} . Example \mathbb{P}_r 's:

Potential Uses:

- Sampling: generate samples x̂₁, x̂₂, ... ~ P_θ that 'resemble' samples from P_r.
- **2** Estimation: given $x_1, ..., x_n \sim \mathbb{P}_r$, find density p_{θ} that best describes \mathbb{P}_r .
- **③** Likelihood Evaluation: given $x \in \mathcal{X}$, evaluate its likelihood $p_{\theta}(x)$.

(2,3) require learning a density p_{θ} .

GANs focus on *sampling*, without explicitly learning a density p_{θ} .

Maximum Likelihood Estimation (MLE)

Given:

() parametric family of densities $\{p_{\theta}\}_{\theta \in \Theta}$

② samples $x_1, ..., x_N$ from real data distribution \mathbb{P}_R Solve:

$$rg\max_{\theta\in\Theta}rac{1}{N}\sum_{i=1}^N\log p_{ heta}(x_i)$$

Equivalent to:

$$rg\min_{ heta\in\Theta} D_{\mathit{KL}}(\mathbb{P}_R||\mathbb{P}_ heta)$$

where \mathbb{P}_{θ} is the distribution with density p_{θ} .

KL Divergence

KL Divergence

$$D_{\mathcal{KL}}(p||q) = \int_{\mathcal{X}} p(x) \log\left(rac{p(x)}{q(x)}
ight) dx$$

KL(p,q)=0.280 KL(q,p)=0.082

・ロト ・雪 ト ・ 田 ト ・

э

April 2018

Sean Welleck (NYU)

Alternative: Only learn to generate samples (implicit density)

Implicit Generative Modeling

Consider real data distribution \mathbb{P}_R over domain \mathcal{X} . Define:

- **Q** Random variable Z with fixed distribution p(z) over \mathcal{Z} (e.g. uniform).
- **2** Function $g_{\theta} : \mathcal{Z} \to \mathcal{X}$ (e.g. neural network)

Then samples $g_{\theta}(z)$ follow a distribution \mathbb{P}_{θ} . Problem: Choose θ such that \mathbb{P}_{θ} is close to \mathbb{P}_R .

This Lecture:

1 Learning g_{θ} : Adversarial Training (GAN)

```
Close To": D<sub>KL</sub>, D<sub>JS</sub>, Wasserstein,...?
```

Generative Modeling - Implicit

Choose θ such that \mathbb{P}_{θ} is *close to* \mathbb{P}_{R}

Generative Adversarial Networks (GAN)

[Goodfellow et al. 2014]

Sean Welleck (NYU)

April 2018 11 / 79

Learn to generate samples through a **2-player game**.

Discriminator $d_{\beta} : \mathcal{X} \to [0, 1]$: learn to distinguish between real and fake samples.

Generator $g_{\theta} : \mathcal{Z} \to \mathcal{X}$: learn to fool the discriminator.

- If g_{θ} fools the discriminator, then $\mathbb{P}_{\theta} \approx \mathbb{P}_{R}!$
- **②** Easy to sample; evaluate $g_{\theta}(z)$ where $z \sim \text{Unif}(0, 1)$

$$\min_{ heta} \max_{eta} \mathbb{E}_{ extsf{x} \sim \mathbb{P}_r} \left[\log d_eta(extsf{x})
ight] + \mathbb{E}_{ extsf{x} \sim \mathbb{P}_ heta} \left[\log(1 - d_eta(extsf{x}))
ight]$$

 d_{β} : discriminator g_{θ} : generator

-

・ロト ・ 日 ・ ・ 目 ト ・

$$\min_{\theta} \max_{\beta} \underbrace{\mathbb{E}_{x \sim \mathbb{P}_r} \left[\log d_{\beta}(x) \right]}_{d(x) \to 1 \text{ for real samples}} + \underbrace{\mathbb{E}_{x \sim \mathbb{P}_{\theta}} \left[\log(1 - d_{\beta}(x)) \right]}_{d(x) \to 0 \text{ for fake samples}}$$

- d_{β} : discriminator
- g_{θ} : generator

э

イロト イロト イヨト イ

$$\min_{\theta} \max_{\beta} \mathbb{E}_{x \sim \mathbb{P}_r} \left[\log d_{\beta}(x) \right] + \underbrace{\mathbb{E}_{x \sim \mathbb{P}_{\theta}} \left[\log(1 - d_{\beta}(x)) \right]}_{\text{Make } \mathbb{P}_{\theta} \to \mathbb{P}_r \text{ so that } d(x) \to 1}$$

- d_{β} : discriminator
- g_{θ} : generator

э

・ロト ・ 日 ・ ・ 目 ト ・

$$\min_{\theta} \max_{\beta} \mathbb{E}_{x \sim \mathbb{P}_r} \left[\log d_{\beta}(x) \right] + \mathbb{E}_{z \sim p(z)} \left[\log(1 - d_{\beta}(g_{\theta}(z))) \right]$$

p(z): noise distribution, e.g. U(0, 1). d_{β} : discriminator g_{θ} : generator

± ►.

Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets. The number of steps to apply to the discriminator, k, is a hyperparameter. We used k = 1, the least expensive option, in our experiments.

for number of training iterations do for k stops do

- for k steps do
 - Sample minibatch of m noise samples $\{z^{(1)}, \ldots, z^{(m)}\}$ from noise prior $p_g(z)$.
 - Sample minibatch of *m* examples $\{x^{(1)}, \ldots, x^{(m)}\}$ from data generating distribution $p_{\text{data}}(x)$.
 - Update the discriminator by ascending its stochastic gradient:

$$abla_{ heta_d} rac{1}{m} \sum_{i=1}^m \left[\log D\left(oldsymbol{x}^{(i)}
ight) + \log \left(1 - D\left(G\left(oldsymbol{z}^{(i)}
ight)
ight)
ight)
ight].$$

end for

- Sample minibatch of m noise samples $\{z^{(1)}, \ldots, z^{(m)}\}$ from noise prior $p_q(z)$.
- Update the generator by descending its stochastic gradient:

$$\nabla_{\theta_g} \frac{1}{m} \sum_{i=1}^{m} \log \left(1 - D\left(G\left(\boldsymbol{z}^{(i)} \right) \right) \right).$$

end for

The gradient-based updates can use any standard gradient-based learning rule. We used momentum in our experiments.

(日) (周) (三) (三)

- Optimal Discriminator
- IS-Divergence

- < ≣ > - <

- ∢ ศ⊒ ▶

Proposition (Optimal Discriminator)

For a fixed generator G

$$D^*(x) = \frac{p_r(x)}{p_r(x) + p_G(x)}$$

Optimal Discriminator.

For a fixed generator G,

$$D^* = \arg \max_D \mathcal{L}(G, D)$$

= $\arg \max_D \int_{\mathcal{X}} \log(D(x)) p_r(x) dx + \int_{\mathcal{Z}} \log(1 - D(G(z))) p_z(z) dz$
= $\arg \max_D \int_{\mathcal{X}} [\log(D(x)) p_r(x) dx + \log(1 - D(x)) p_G(x) dx]$

Observe that $A \log y + B \log(1 - y)$ is maximized at $y = \frac{A}{A+B}$. Thus $D^*(x) = \frac{p_r(x)}{p_r(x)+p_G(x)}$.

Given an optimal discriminator, the generator optimization is related to minimizing a Jensen-Shannon divergence.

KL Divergence

$$D_{KL}(p||q) = \int_{\mathcal{X}} p(x) \log\left(rac{p(x)}{q(x)}
ight) dx$$

Jensen-Shannon (JS) Divergence

$$D_{JS}(p||q) = rac{1}{2} D_{\mathcal{KL}}\left(p \mid\mid rac{p+q}{2}
ight) + rac{1}{2} D_{\mathcal{KL}}\left(q \mid\mid rac{p+q}{2}
ight)$$

→ ∃ →

JS Divergence

KL(p,q)=0.280 KL(q,p)=0.082 JS(p,q)=JS(q,p)=0.022

Sean Welleck (NYU)

(W)GANs

April 2018 24 / 79

Given optimal discriminator D^* , consider finding an optimal generator:

$$egin{argmin} \arg\min_{G}\mathcal{L}(G,D^*) &= \mathbb{E}_{x\sim\mathbb{P}_r}\log D^*(x) + \mathbb{E}_{x\sim\mathbb{P}_G}\log(1-D^*(x)) \ &= \mathbb{E}_{x\sim\mathbb{P}_r}\lograc{p_r}{p_r+p_G} + \mathbb{E}_{x\sim\mathbb{P}_G}\lograc{p_G}{p_r+p_G} \end{split}$$

GAN — Properties - JS-Divergence

We can find $\mathcal{L}(G, D*)$ by expanding the Jensen-Shannon divergence:

$$D_{JS}(\mathbb{P}_{r}, \mathbb{P}_{G}) = \frac{1}{2} D_{KL} \left(\mathbb{P}_{r}, \frac{\mathbb{P}_{r} + \mathbb{P}_{G}}{2} \right) + \frac{1}{2} D_{KL} \left(\mathbb{P}_{G}, \frac{\mathbb{P}_{r} + \mathbb{P}_{G}}{2} \right)$$
$$= \frac{1}{2} \mathbb{E}_{x \sim \mathbb{P}_{r}} \left[\log \frac{2p_{r}}{p_{r} + p_{G}} \right] + \frac{1}{2} \mathbb{E}_{x \sim \mathbb{P}_{G}} \left[\log \frac{2p_{G}}{p_{r} + p_{G}} \right]$$
$$2D_{JS}(\mathbb{P}_{r}, \mathbb{P}_{G}) = 2 \log 2 + \underbrace{\mathbb{E}_{x \sim \mathbb{P}_{r}} \left[\log \frac{p_{r}}{p_{r} + p_{G}} \right] + \mathbb{E}_{x \sim \mathbb{P}_{G}} \left[\log \frac{p_{G}}{p_{r} + p_{G}} \right]}_{\mathcal{L}(G, D*)}$$

Therefore:

JS-Divergence Property

$$\min_{G} \mathcal{L}(G, D*) \equiv \min_{G} 2D_{JS}(\mathbb{P}_r, \mathbb{P}_G) - 2\log 2$$

Sean Welleck (NYU)

Image: Image:

< ∃ > <

JS-Divergence Property

$$\min_{G} \mathcal{L}(G, D*) \equiv \min_{G} 2D_{JS}(\mathbb{P}_r, \mathbb{P}_G) - 2\log 2$$

In practice,

- D^* may not be found due to k step updates.
- We use parametrized D_{θ}, G_{β} .

.∃ ▶ ∢

- **1** Learn discriminator d_{β} , generator g_{θ} via 2-player game.
- **2** Use generator to sample from a distribution \mathbb{P}_{θ} .
- **③** Training process approximately minimizes $D_{JS}(\mathbb{P}_r, \mathbb{P}_{\theta})$.

Some issues:

- Non-convergence
- Ø Mode collapse
- **③** JS Divergence (vanishing gradient, instability)

GAN — Issues - Non Convergence

 $\begin{aligned} & J(x,y) = xy \\ \text{Player 1: } \min_{x} J(x,y) & \text{Player 2: } \max_{y} J(x,y) \\ & x_{t+1} \leftarrow x_t - \eta y_t & y_{t+1} \leftarrow y_t + \eta x_t \end{aligned}$

Figure: Difficulty of finding Nash equilibrium using gradient descent.

See [Salimans et al. 201	6]	< □	 < @ > < E > < E > < E 	
Sean Welleck (NYU)	(W)GANs		April 2018	30 / 79

g_{θ} maps many z_i to the same x

Figure 22: An illustration of the mode collapse problem on a two-dimensional toy dataset. In the top row, we see the target distribution p_{data} that the model should learn. It is a mixture of Gaussians in a two-dimensional space. In the lower row, we see a series of different distributions learned over time as the GAN is trained. Rather than converging to a distribution containing all of the modes in the training set, the generator only ever produces a single mode at a time, cycling between different modes as the discriminator learns to reject each one. Images from Metz *et al.* (2016).

Minibatch Features (Salimans 2016), Unrolled GANs (Metz 2016)

GAN — Issues - Choice of Distance

Goal: make \mathbb{P}_{θ} close to \mathbb{P}_{R} .

What is the proper notion of distance $\rho(\mathbb{P}_{\theta}, \mathbb{P}_{R})$? Is JS-divergence ideal?

Consider using a distance¹ as a loss, $\mathcal{L}(\theta) = \rho(\mathbb{P}_r, \mathbb{P}_{\theta})$. Want:

- $\rho(\mathbb{P}_r, \mathbb{P}_{\theta})$ continuous
- $\nabla_{\theta} \rho(\mathbb{P}_r, \mathbb{P}_{\theta})$ 'useful'
 - $\nabla_{\theta} \rho$ exists
 - $\nabla_{\theta} \rho$ is not everywhere zero

In the typical setting, D_{JS} does not have these properties! Side-effects: vanishing gradients, unstable training.

¹or divergence, etc.

GAN — Distance Comparison Example

Suppose we have two probability distributions, P and Q:

$$\forall (x, y) \in P, x = 0 \text{ and } y \sim U(0, 1)$$

$$\forall (x, y) \in Q, x = \theta, 0 \le \theta \le 1 \text{ and } y \sim U(0, 1)$$

Diagram:

https://lilianweng.github.io/lil-log/2017/08/20/from-GAN-to-WGAN.html = > = >

Sean Welleck (NYU)

(W)GANs

GAN — Distance Comparison Example

KL

$$D_{\mathcal{KL}}(P||Q) = egin{cases} \sum_{x=0, y \sim U(0,1)} 1 \cdot \log rac{1}{0} = \infty & heta
eq 0 \ 0 & ext{otherwise} \end{cases}$$

JS

 $D_{JS} = \log 2$ when $\theta \neq 0$. 0 otherwise.

 $abla_{ heta}\mathcal{L}(heta) =
abla_{ heta}D_{JS}(\mathbb{P}_r,\mathbb{P}_{ heta})$ is 0 when the distributions don't overlap!

< ≣ ► <

GAN — Distance Comparison Example

April 2018 36 / 79
GAN — Issues - JS Divergence

More generally, if supports of $\mathbb{P}_1, \mathbb{P}_2$ lie on low dimensional manifolds:

() With high-probability, their intersection is a set of measure $zero^2$.

²See Lemma 3 [Arjovsky & Bottou 2016] Diagram:

https://lilianweng.github.io/lil-log/2017/08/20/from-GAN-to-WGAN.html

Sean Welleck (NYU)

(W)GANs

More generally, if supports of $\mathbb{P}_1,\mathbb{P}_2$ lie on low dimensional manifolds:

• With high-probability, their intersection is a set of measure zero³.

When the supports have measure zero intersection:

• D_{JS} maxes out: $D_{JS}(\mathbb{P}_1, \mathbb{P}_2) = \log 2.^4$

Sean Welleck (NYU)

³See Lemma 3 [Arjovsky & Bottou 2016]

⁴See Arjovsky & Bottou 2.3

GAN — Issues - JS Divergence

Our Setting: supports⁵ of \mathbb{P}_R , \mathbb{P}_{θ} lie on low-dimensional manifolds within a high-dimensional space.

⁵places where
$$p(x) \neq 0$$

Sean Welleck (NYU)

When the supports have measure zero intersection:

- D_{JS} maxes out: $D_{JS} = \log 2$
- There is a perfect discriminator, with zero gradient everywhere.

When the supports have measure zero intersection:

- D_{JS} maxes out: $D_{JS} = \log 2$
- There is a perfect discriminator, with zero gradient everywhere.

Theorem (Vanishing Gradient)

When the supports of \mathbb{P}_r and \mathbb{P}_{θ} are low-dimensional, non-aligned manifolds M_1, M_2 , there exists a discriminator D^* with accuracy 1, and $\nabla_x D^*(x) = 0$ for almost every x in M_1 or M_2 .

Perfect discriminator and vanishing gradients.

Arjovsky & Bottou 2016

Sean Welleck (NYU)

Workarounds:

- Don't train d_{β} to convergence (difficult to calibrate, unstable)
- Alternative discriminator loss from GAN paper (unstable)

Want:

- $\rho(\mathbb{P}_R, \mathbb{P}_{\theta})$ with useful gradient even when supports do not align.
- Be able to train d_{β} to convergence.

Wasserstein-1 Distance

$$W_1(\mathbb{P}_R,\mathbb{P}_{ heta}) = \inf_{\gamma \in \mathsf{\Gamma}(\mathbb{P}_R,\mathbb{P}_{ heta})} \mathbb{E}_{x,\hat{x} \sim \gamma} ||x - \hat{x}||$$

Sean Welleck (NYU)

< ロ > < 同 > < 三 > < 三

GAN — Wasserstein-1 / "Earth-Mover" distance

Earth-Mover Distance

 What is the *minimum cost* of making the distributions equal by moving mass?

GAN — Wasserstein-1 / "Earth-Mover" distance

Cost: L_1 distance per unit mass Define a *coupling* $\gamma(x, y)$ specifying mass to move from x to y. $\sum_x \gamma(x, y) = P_R(y), \sum_y \gamma(x, y) = P_{\theta}(x).$

GAN — Wasserstein-1 / "Earth-Mover" distance

Example γ :

$$egin{aligned} &\gamma(1,4)=0.5\ &\gamma(2,4)=0.25\ &\gamma(3,3)=0.25\ &\implies \mathrm{cost}=(0.5)*3+(0.25)*2+(0.25)*0 \end{aligned}$$

Goal: find minimum cost coupling $\gamma \in \Gamma(P_{\theta}, P_r)$

Sean Welleck (NYU)

$$W_1(\mathbb{P}_R,\mathbb{P}_{ heta}) = \inf_{\gamma\in \mathsf{\Gamma}(\mathbb{P}_R,\mathbb{P}_{ heta})} \mathbb{E}_{x,\hat{x}\sim \gamma}||x-\hat{x}||$$

Well-behaved when $\mathbb{P}_R, \mathbb{P}_{\theta}$ have disjoint or low-dimensional supports!

GAN — Distance Comparison Example

Suppose we have two probability distributions, *P* and *Q*:

$$\forall (x, y) \in P, x = 0 \text{ and } y \sim U(0, 1)$$

$$\forall (x, y) \in Q, x = \theta, 0 \le \theta \le 1 \text{ and } y \sim U(0, 1)$$

Diagram:

https://lilianweng.github.io/lil-log/2017/08/20/from-GAN-to-WGAN.html = > = >

Sean Welleck (NYU)

(W)GANs

KL

$$D_{\mathcal{KL}}(P||Q) = \sum_{x=0, y \sim U(0,1)} 1 \cdot \log \frac{1}{0} = \infty$$
 when $\theta \neq 0$. 0 otherwise.

JS

$$D_{JS} = \log 2$$
 when $\theta \neq 0$. 0 otherwise.

$$W_1$$

 $W(P,Q) = |\theta|$

Only Wasserstein is suitable for gradient-based learning.

< ∃ > <

GAN — Distance Comparison Example

More Generally:⁶

Theorem (Convergence Hierarchy)

Let \mathbb{P} be a distribution and $(\mathbb{P}_n)_{n \in \mathbb{N}}$ be a sequence of distributions over \mathcal{X} . $D_{KL}(\mathbb{P}_n || \mathbb{P}) \to 0$ implies $D_{JS}(\mathbb{P}_n || \mathbb{P}) \to 0$ implies $W(\mathbb{P}_n || \mathbb{P}) \to 0$.

Theorem (Wasserstein Continuity and Differentiability)

If $g_{\theta}(z)$ is a feedforward neural network and $p(z) \sim U(0,1)$, then $W(\mathbb{P}_r, \mathbb{P}_{\theta})$ is continuous everywhere and differentiable almost everywhere.

Continuity and differentiability theorem does not hold for $D_{KL}, D_{JS}!$

⁶See [Arjovsky 2017] for general statements and proofs. $\square \rightarrow \langle \square \rightarrow \langle \square \rightarrow \langle \square \rightarrow \langle \square \rightarrow \rangle$

- Setting: gradient-based learning on distributions with supports on low-dimensional manifolds.
- Standard GAN (D_{JS}) discriminator quickly becomes too good.
- D_{JS} (and D_{KL}) do not provide useful gradients.
- Workarounds are heuristic and typically unstable.
- Wasserstein distance has good properties (continuity, differentiability).

Next: How to minimize Wasserstein distance in practice?

WGAN

[Arjovsky et al 2017]

Sean Welleck (NYU)

× ≣ ► ≣ ∽ ৭ ৫ April 2018 54 / 79

メロト メロト メヨト メ

Wasserstein GAN (WGAN): A practical method for optimizing W_1 .

$$W_1(\mathbb{P}_R,\mathbb{P}_ heta) = \inf_{\gamma\in \mathsf{\Gamma}(\mathbb{P}_R,\mathbb{P}_ heta)} \mathbb{E}_{\mathrm{x},\hat{\mathrm{x}}\sim \gamma} ||\mathrm{x}-\hat{\mathrm{x}}||$$

Intractable due to $|\Gamma|$.

WGAN: A practical method for optimizing W_1 .

$$W_1(\mathbb{P}_R,\mathbb{P}_{\theta}) = \inf_{\gamma \in \mathsf{\Gamma}(\mathbb{P}_R,\mathbb{P}_{\theta})} \mathbb{E}_{x,\hat{x} \sim \gamma} ||x - \hat{x}||$$

Dual form (Kantorovich-Rubinstein):

$$W_1(\mathbb{P}_R,\mathbb{P}_{ heta}) = \sup_{||f||_L \leq 1} \mathbb{E}_{x \sim \mathbb{P}_r}[f(x)] - \mathbb{E}_{x \sim \mathbb{P}_{ heta}}[f(x)]$$

 $||f||_{L} \leq 1$: 1-Lipschitz continuous functions.⁷

⁷there is a $K \ge 0$ such that $\forall x_1, x_2, |f(x_1) - f(x_2)| \le K |x_1 - x_2|$; "bounded slope" and the slope of the slo

WGAN — Kantorovich-Rubinstein Proof Outline

$$W_{1}(\mathbb{P}_{R}, \mathbb{P}_{\theta}) = \inf_{\gamma \in \Gamma(\mathbb{P}_{R}, \mathbb{P}_{\theta})} \mathbb{E}_{x, \hat{x} \sim \gamma} ||x - \hat{x}||$$

$$\equiv \inf_{\gamma} \mathbb{E}_{x, \hat{x} \sim \gamma} \left[||x - \hat{x}|| + \sup_{f} \mathbb{E}_{s \sim P_{R}}[f(s)] - \mathbb{E}_{t \sim P_{\theta}}[f(t)] - (f(x) - f(\hat{x}))] \right]$$

$$= \inf_{\gamma} \sup_{f} \sup_{\sigma \in r} \mathbb{E}_{x, \hat{x} \sim \gamma} [||x - \hat{x}|| + \mathbb{E}_{s \sim P_{R}}[f(s)] - \mathbb{E}_{t \sim P_{\theta}}[f(t)] - (f(x) - f(\hat{x}))]$$

$$= \sup_{f} \inf_{\sigma \in r} \mathbb{E}_{x, \hat{x} \sim \gamma} [||x - \hat{x}|| + \mathbb{E}_{s \sim P_{R}}[f(s)] - \mathbb{E}_{t \sim P_{\theta}}[f(t)] - (f(x) - f(\hat{x}))]$$

$$= \sup_{f} \mathbb{E}_{s \sim P_{R}}[f(s)] - \mathbb{E}_{t \sim P_{\theta}}[f(t)] + \inf_{\gamma} [\mathbb{E}_{x, \hat{x} \sim \gamma} ||x - \hat{x}|| - (f(x) - f(\hat{x}))]$$

$$= \sup_{\|f'\|_{L} \leq 1} \mathbb{E}_{x \sim \mathbb{P}_{r}}[f(x)] - \mathbb{E}_{x \sim \mathbb{P}_{\theta}}[f(x)] \square$$

WGAN Objective

$$W_1(\mathbb{P}_R,\mathbb{P}_{ heta}) = \max_{w\in\mathcal{W}} \mathbb{E}_{x\sim\mathbb{P}_r}[f_w(x)] - \mathbb{E}_{z\sim
ho(z)}[f_w(g_ heta(z))]$$

where $\{f_w\}_{w \in \mathcal{W}}$ are parametrized 1-Lipschitz functions.

Lipschitz constraint: [Arjovsky et al. 2017]: *weight clipping* [Gulrajani et al. 2017]: *gradient penalty*

$$\max_{\substack{w \in \mathcal{W} \\ \text{find critic } f_w}} \mathbb{E}_{x \sim \mathbb{P}_r}[f_w(x)] - \mathbb{E}_{z \sim p(z)}[f_w(g_\theta(z))]$$

$$\max_{w \in \mathcal{W}} \qquad \underbrace{\mathbb{E}_{x \sim \mathbb{P}_r}[f_w(x)]}_{-\mathbb{E}_{z \sim p(z)}[f_w(g_\theta(z))]}$$

critic gives high score for real samples

$$\max_{w \in \mathcal{W}} \mathbb{E}_{x \sim \mathbb{P}_r}[f_w(x)] \qquad \underbrace{-\mathbb{E}_{z \sim p(z)}[f_w(g_\theta(z))]}_{}$$

critic gives low score for fake samples

∃ > <</p>

Image: Image:

$$\max_{w \in \mathcal{W}} \mathbb{E}_{x \sim \mathbb{P}_r}[f_w(x)] - \mathbb{E}_{z \sim p(z)}[f_w(g_\theta(z))]$$

"Generator" gradient:
$$\underbrace{-\mathbb{E}_{z \sim p(z)}[\nabla_\theta f_w(g_\theta(z))]}_{\nabla_\theta \mathcal{W}(\mathbb{P}_r, \mathbb{P}_\theta)}$$

メロト メロト メヨト メ

Algorithm 1 WGAN, our proposed algorithm. All experiments in the paper used the default values $\alpha = 0.00005, c = 0.01, m = 64, n_{critic} = 5.$

Require: : α , the learning rate. c, the clipping parameter. m, the batch size. $n_{\rm critic}$, the number of iterations of the critic per generator iteration.

Require: : w_0 , initial critic parameters. θ_0 , initial generator's parameters.

- 1: while θ has not converged do
- for $t = 0, ..., n_{\text{critic}}$ do 2:
- Sample $\{x^{(i)}\}_{i=1}^m \sim \mathbb{P}_r$ a batch from the real data. 3:
- Sample $\{z^{(i)}\}_{i=1}^m \sim p(z)$ a batch of prior samples. 4:
- $g_w \leftarrow \nabla_w \left[\frac{1}{m} \sum_{i=1}^{m} f_w(x^{(i)}) \frac{1}{m} \sum_{i=1}^{m} f_w(g_\theta(z^{(i)})) \right]$ $w \leftarrow w + \alpha \cdot \text{BMSProp}(w, \alpha)$ 5:

6:
$$w \leftarrow w + \alpha \cdot \operatorname{RMSProp}(w, g_w)$$

- $w \leftarrow \operatorname{clip}(w, -c, c)$ 7:
- end for 8:

9: Sample
$$\{z^{(i)}\}_{i=1}^m \sim p(z)$$
 a batch of prior samples.

10:
$$g_{\theta} \leftarrow -\nabla_{\theta} \frac{1}{m} \sum_{i=1}^{m} f_w(g_{\theta}(z^{(i)}))$$

 $\theta \leftarrow \theta - \alpha \cdot \text{RMSProp}(\theta, q_{\theta})$ 11:

12: end while

WGAN — Results (Arjovsky et al 2017)

Figure: The WGAN critic can provide useful gradients at optimality

Figure 6: Algorithms trained with a generator without batch normalization and constant number of filters at every layer (as opposed to duplicating them every time as in [18]).

Figure: WGAN was more robust to various architectural changes

Sean Welleck (NYU)

(W)GANs

April 2018 64 / 79

WGAN — Results (Arjovsky et al 2017)

Figure: WGAN has a meaningful loss metric

Sean Welleck (NYU)

April 2018 65 / 79

- Wasserstein distance is more suitable than D_{JS}.
- Optimize Wasserstein distance using a dual objective.
- Objective analogous to GAN ('critic' + 'generator').

↑ 156 ↓

[R] [1701.07875] Wasserstein GAN (arxiv.org) submitted 1 year ago by ajmooch

167 comments share save hide give gold report

all 167 comments

sorted by: best -

÷

🛖 [-] danielvarga 34 points 1 year ago

- For mathematicians: it uses Wasserstein distance instead of Jensen-Shannon divergence to compare distributions.
- · For engineers: it gets rid of a few unnecessary logarithms, and clips weights.
- · For others: it employs an art critic instead of a forgery expert.

Applications and Extensions

< ∃ >

 \mathbb{P}_r : Distribution over images $\hat{x} \sim \mathbb{P}_{\theta}$: Sampled image

Original GAN

Goodfellow et al. 2014

Toronto Face Dataset

CIFAR 10

DC-Gan Radford et al. 2015

Face Dataset

LSUN Bedroom

WGAN-GP

Gulrajani et al. 2017

LSUN Bedroom < ∃ >

< A

CelebA
Progressive GAN

Karras et al. 2018

CelebA

LSUN Bedroom

Sean Welleck (NYU)

April 2018 73 / 79

Image-to-Image Translation

diagram: Zhu et al. 2017

Sean Welleck (NYU)

Image-to-Image Translation

Isola et al. 2016

• • • • • • • • • • • •

Unpaired Image-to-Image Translation

Zhu et al. 2017

Unpaired Image-to-Image Translation

Figure 1: Given any two unordered image collections X and Y, our algorithm learns to automatically "translate" an image from one into the other and vice versa: (*left*) Monet paintings and landscape photos from Flickr; (*center*) zebras and horses from ImageNet; (*right*) summer and winter Yosemite photos from Flickr. Example application (*bottom*): using a collection of paintings of famous artists, our method learns to render natural photographs into the respective styles.

 $\int c_{ANI} + \int$ Sean Welleck (NYU) (W)GANs April 2018 77 / 79

The End

メロト メロト メヨト メ

Other Resources

 Kantorovich-Rubinstein Duality Proof: https://vincentherrmann.github.io/blog/wasserstein/

∃ >