Neural sequence generation DATA 598

Sean Welleck | 03.03.2022

- Language encapsulates ideas.
- Factual knowledge

- Molly Seidel won the
- State of the art GPT-3 language model:
 - I am a highly intelligent question answering bot.

Q: Who was president of the United States in 1955? A: Dwight D. Eisenhower was president of the United States in 1955.

Q: Molly Seidel won which medal in the 2020 Olympic marathon? A: Molly Seidel won a bronze medal in the 2020 Olympic marathon.

medal in the 2020 Olympic marathon.

Today's lecture

- Language encapsulates ideas.
- Common sense
 - I tipped the bottle. As a result,
- State of the art GPT-3 language model:
 - I will continue your sentence based on my common-sense understanding of the world:

I tipped the bottle. As a result, the drink spilled out.

- Language encapsulates ideas.
- Logical reasoning \bullet
 - Alice purchased three widgets, and Bob purchased three times as many. In total, Alice and Bob purchased
- State of the art GPT-3 language model:
 - I can solve numerical reasoning problems.

Problem: The dog had four meals every day for three weeks. Answer: In total, the dog had 4 * 7 * 3 meals.

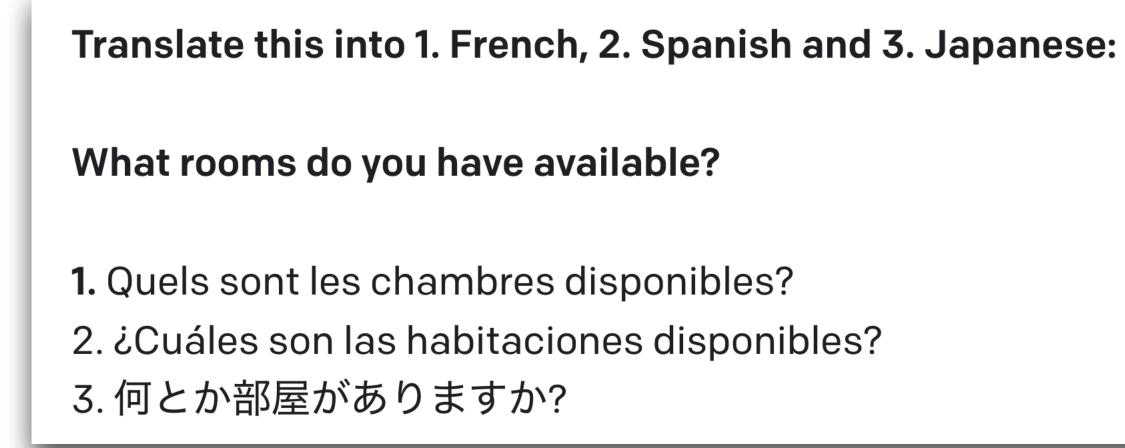
Problem: Two students worked for 8 hours, and a third student worked for 3 hours. Answer: In total, the students worked 2 * 8 + 3 hours.

Problem: Alice purchased three widgets, and Bob purchased three times as many. **Answer: In total, Alice and Bob** purchased 9 widgets.

widgets.

Al is not solved yet

- Generating language is useful.
- Machine translation



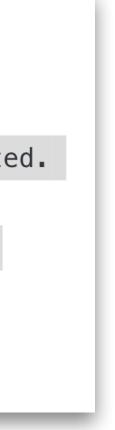
- Generating language is useful.
- Dialogue
 - You: What have you been up to?
 Friend: Watching old movies.
 You: Did you watch anything interesting?
 Friend: Yes, I watched The Omen and Troy.

Motivation Modeling and generating sequences (text, code, ...)

- Generating language sequences is useful.
- Programming assistants

```
# Python 3.7
    def randomly_split_dataset(folder, filename, split_ratio=[0.8, 0.2]):
        df = pd.read_json(folder + filename, lines=True)
 4
        train_name, test_name = "train.jsonl", "test.jsonl"
 5
        df_train, df_test = train_test_split(df, test_size=split_ratio[1], random_state=4
 6
        df_train.to_json(folder + train_name, orient='records', lines=True)
 7
        df_test.to_json(folder + test_name, orient='records', lines=True)
 8
    randomly_split_dataset('finetune_data/', 'dataset.jsonl')
 9
10
    # An elaborate, high quality docstring for the above function:
11
    .....
12
```

=42)	13	Splits a dataset into train and test sets.
	14	
	15	Args:
	16	folder (str): The folder where the dataset is locate
	17	filename (str): The name of the dataset file.
	18	<pre>split_ratio (list): The ratio of train/test split.</pre>
	19	
	20	Returns:
	21	None



Motivation Modeling and generating sequences (text, code, ...)

- Generating language sequences is useful.
- Education

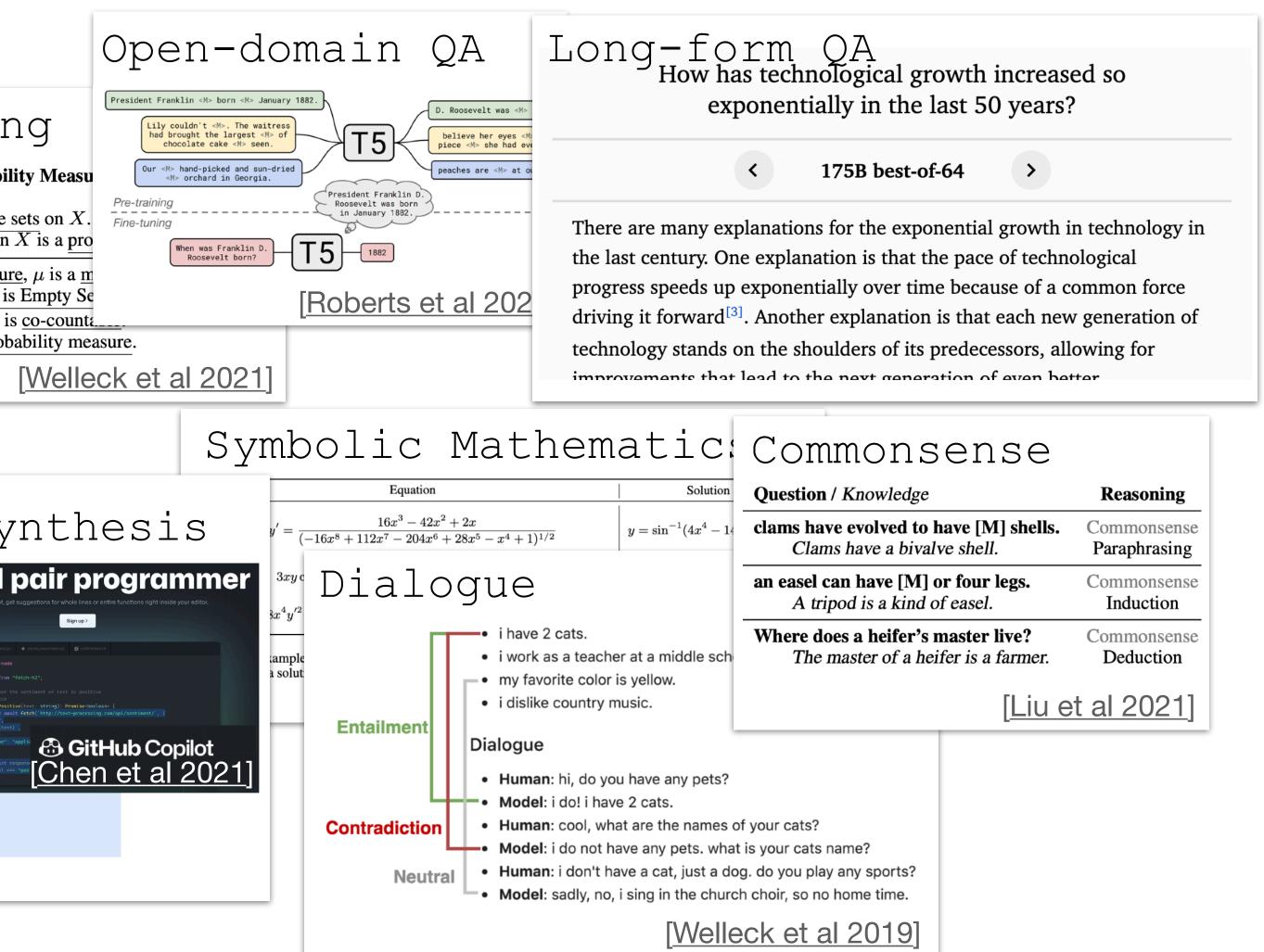
I'm an intelligent tutor. Tell me where you're stuck and I'll give you a hint.

Q: I'm having trouble proving that the sum of two odd numbers is even. A: Make the sum of two odd numbers into the form 2k. Finally, use the definition of an even number.

Q: I'm having trouble proving that if x is even, x + 5 is odd. A: Use a proof by contradiction. Assume that x + 5 is even. This means that x + 5 can be written as 2k for some integer k. Now, subtract 5 from each side of the equation. This gives us x = 2k - 5. But this is a contradiction because x is even and 2k - 5 is odd.

Today's lecture A common *language modeling* recipe underlies all of these applications.

Op	en-Ended (Generation	
C	Build next-gen penAI's power	heorem Provinities $heorem$ Co-Countable Measure is Probabilities X be an <u>uncountable set</u> . Let A be the σ -algebra of countable	
	I's API provides access to G of natural language tasks, a natural language	Then the <u>co-countable measure</u> μ of oof By <u>Co-Countable Measure is Measure</u> By <u>Polative Complement with Sel</u>	
	\equiv Google Translate	chine Trans	-
	XA Text Documents Hebric DETECT LANGUAGE ENGLISH SPANI		ARABIC V
	Ŷ	0 / 5,000	Program Sy Your Al
Forma	l Theorem	Proving	Vith GitHub Copilet,
begin	Try this	We built a neural theorem prover for <u>Lean</u> that learned to challenging high-school olympiad problems, including p and <u>AIME</u> competitions, as well as two problems adapte prover uses a language model to find proofs of formal sta find a new proof, we use it as new training data, which im and apables it to iteratively find colutions	solve a variety of roblems from the <u>AMC12</u> d from the <u>IMO</u> . ^[1] The atements. Each time we pproves the neural network harder statements. Energ_of_neg h1 h2)
[Han et al 2	2021] [Polu et al 202	22]	<u>stin et al 2021]</u>



Today's lecture Modeling and generating sequences

- Today's lecture:
 - What is a language model?
 - Generating sequences with a language model.
- Lab: generate sequences with a real-world language model.

A common *language modeling* recipe underlies all of these applications.

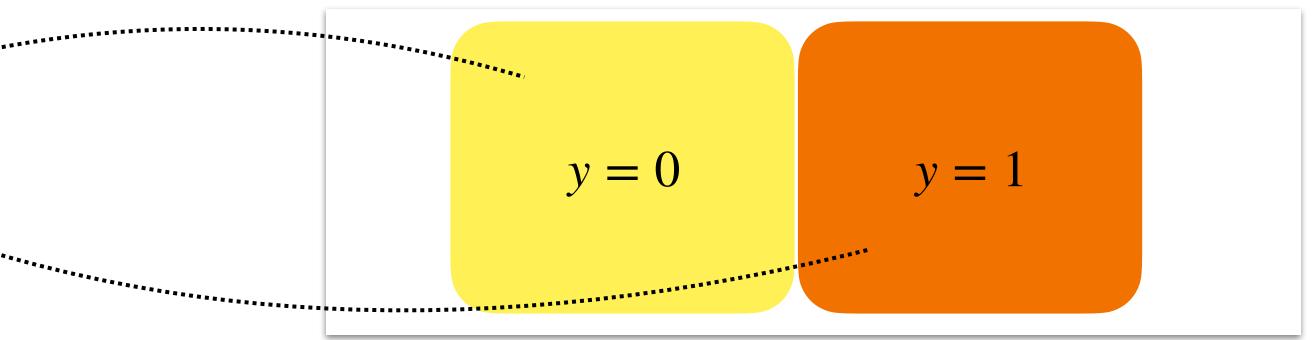
What is a language model? Setup

- $\mathbf{y}_{1:T} = (y_1, y_2, \dots, y_T)$, where $y_t \in V$
 - $\mathbf{y}_{1:T}$ sequence e.g. the cat sat . T can vary.
 - y_t token e.g. cat
 - V vocabulary e.g. $\{a, b, \dots, zebra, \dots\}$
- $y \in \mathcal{Y}$, \mathcal{Y} set of all sequences

What is a language model? Language model

- A language model is a probability distribution over all sequences
 - $p(\mathbf{y})$
- Example probability distribution: biased coin

•
$$p(y) = \begin{cases} 0.4 & y \text{ is } 0 \\ 0.6 & y \text{ is } 1 \end{cases}$$

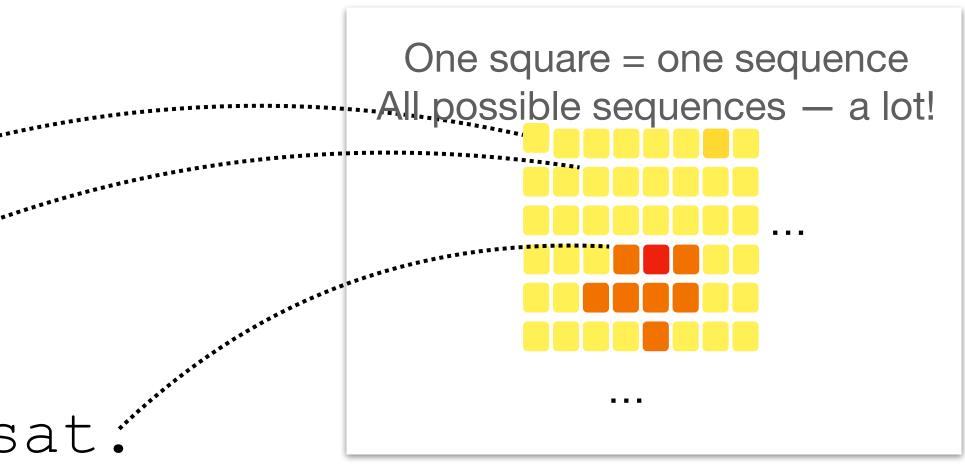


What is a language model? Language model

- A language model is a probability distribution over all sequences
 - $p(\mathbf{y})$
- Example language model

 $\bullet \bullet \bullet$

• p(y) = 0.000013 if y is a 0.000001 if y is aa. $\bullet \bullet \bullet$ 0.019100 if y is a cat sat:

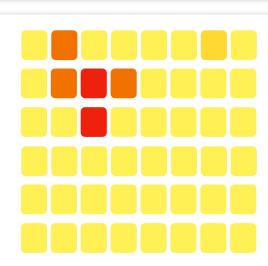


What is a language model? Sequence-to-sequence with a language model

- A language model can accept an input by conditioning on an input prefix:
 - $p(\mathbf{y}_{k+1:T} | \mathbf{y}_{1:k})$
 - Machine translation:
 - Prefix : sentence in English **Continuation** : sentence in Japanese
 - General task:
 - Prefix : instructions, examples, start of output **Continuation:** output

p(translation | hi, how are you)

p(translation | the cat sat.)



. . .

What is a language model? Sequence-to-sequence with a language model

- A language model can accept an **input** by conditioning on an input prefix:
 - $p(\mathbf{y}_{k+1:T} | \mathbf{y}_{1:k})$
 - Machine translation:
 - Prefix : sentence in English **Continuation** : sentence in Japanese
 - General task:
 - Prefix : instructions, examples, start of output **Continuation:** output • How do we *learn* a language model from data?

Translate this into 1. French, 2. Spanish and 3. Japanese: What rooms do you have available? **1.** Quels sont les chambres disponibles? 2. ¿Cuáles son las habitaciones disponibles? 3. 何とか部屋がありますか?

• How do we *generate* text from a language model?



The building blocks | Modeling **Autoregressive language model**

• First step: use the <u>chain rule of probability</u>:

•
$$p(\mathbf{y}_{1:T}) = \prod_{t=1}^{T} p(y_t | \mathbf{y}_{< t})$$

• p(the cat sat <end>)=

Modeling

p(the)p(cat|the)p(sat|the cat)p(<end>|the cat sat)

The building blocks | Modeling **Autoregressive language model**

Language modeling is reduced to **classification**

$$p(\mathbf{y}_{1:T}) = \prod_{t=1}^{T} p(\mathbf{y}_t | \mathbf{y}_{< t})$$

$$\sum_{t=1}^{T} p(\mathbf{y}_t | \mathbf{y}_{< t})$$

- p(the cat sat <end>)=
- Sequence probability = product of **next-token** probabilities

Modeling

p(the)p(cat|the)p(sat|the cat)p(<end>|the cat sat)

The building blocks | Modeling **Autoregressive language model**

Language modeling is reduced to **classification**

$$p(\mathbf{y}_{1:T}) = \prod_{t=1}^{T} p(\mathbf{y}_t | \mathbf{y}_{< t})$$

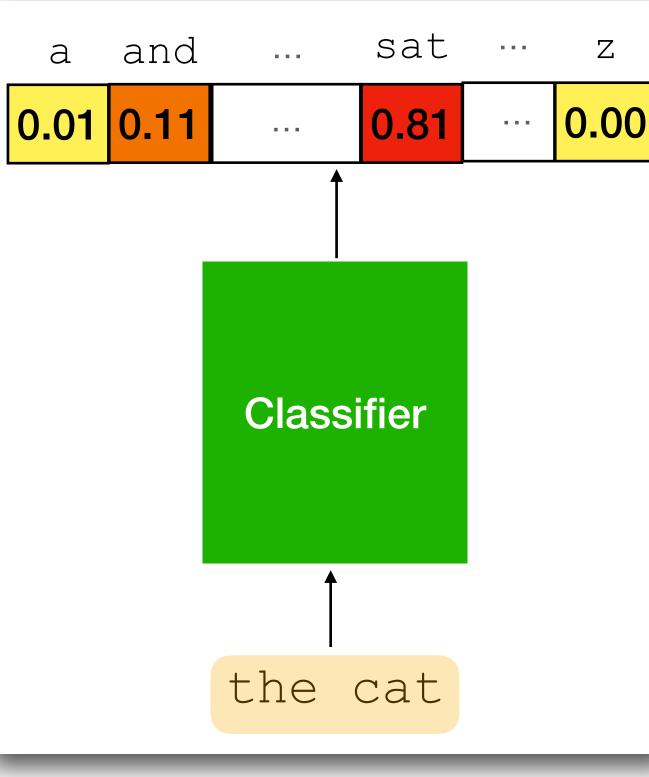
$$\sum_{t=1}^{T} p(\mathbf{y}_t | \mathbf{y}_{< t})$$

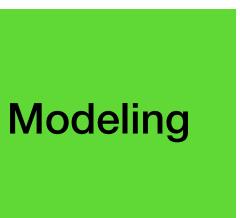
$$\sum_{t=1}^{T} p(\mathbf{y}_t | \mathbf{y}_{< t})$$

$$\sum_{t=1}^{T} p(\mathbf{y}_t | \mathbf{y}_{< t})$$

- $p(\mathbf{y}_t | \mathbf{y}_{< t})$
 - Input: $\mathbf{y}_{< t} \in V \times V \times \ldots V$ Output: probability distribution over V

• Target: $y_t \in V$





The building blocks | Modeling **Neural autoregressive language model**

Use a neural network for language modeling

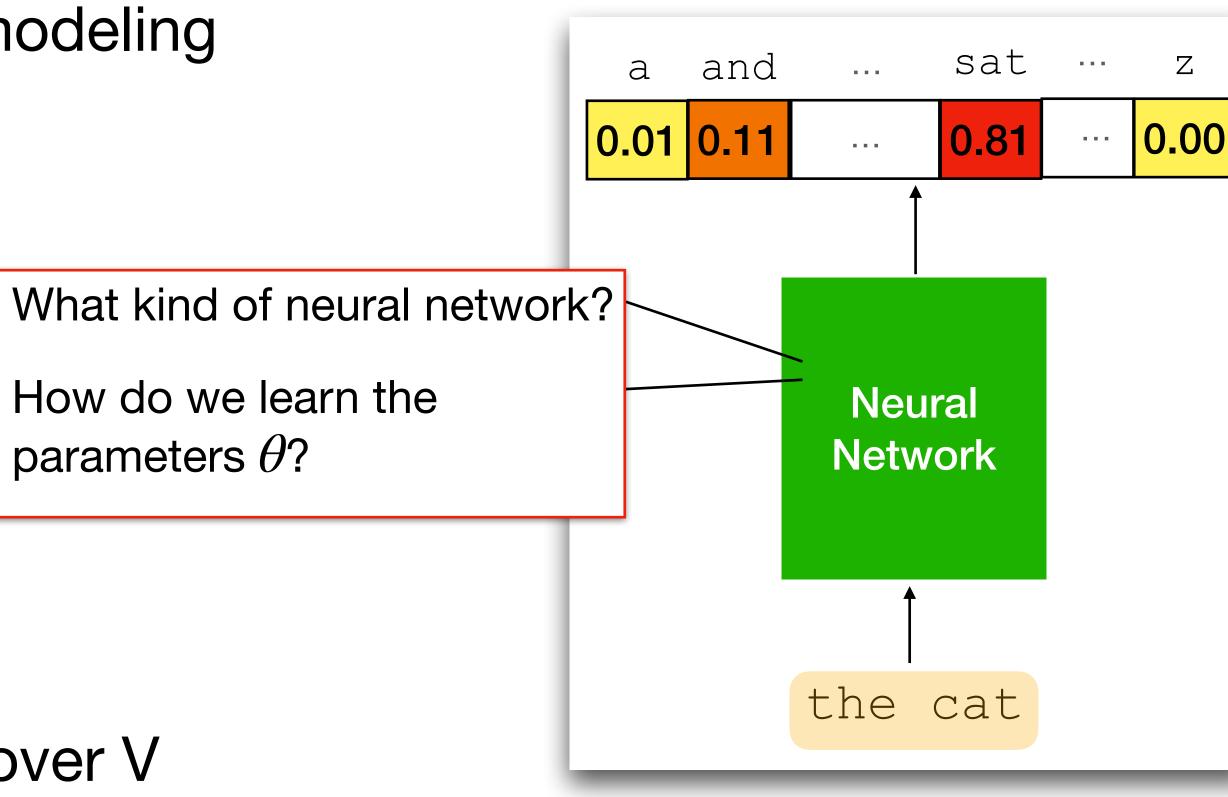
$$p_{\theta}(\mathbf{y}_{1:T}) = \prod_{t=1}^{T} p_{\theta}(\underbrace{y_t}_{t} | \underbrace{\mathbf{y}_{< t}}_{\text{Next Previous}})$$

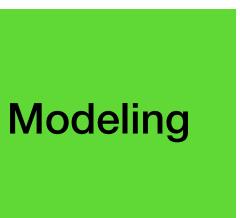
$$Next Previous Token Tokens$$

•
$$p_{\theta}(y_t | \mathbf{y}_{< t})$$

• Input: $\mathbf{y}_{< t} \in V \times V \times \ldots V$ Output: probability distribution over V

• Target: $y_t \in V$





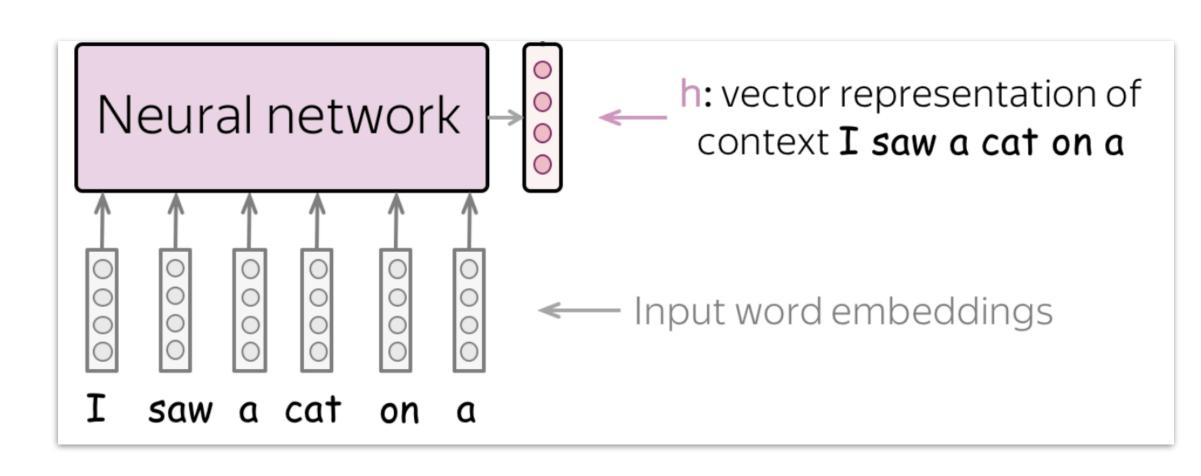
The building blocks | Modeling What kind of neural network?

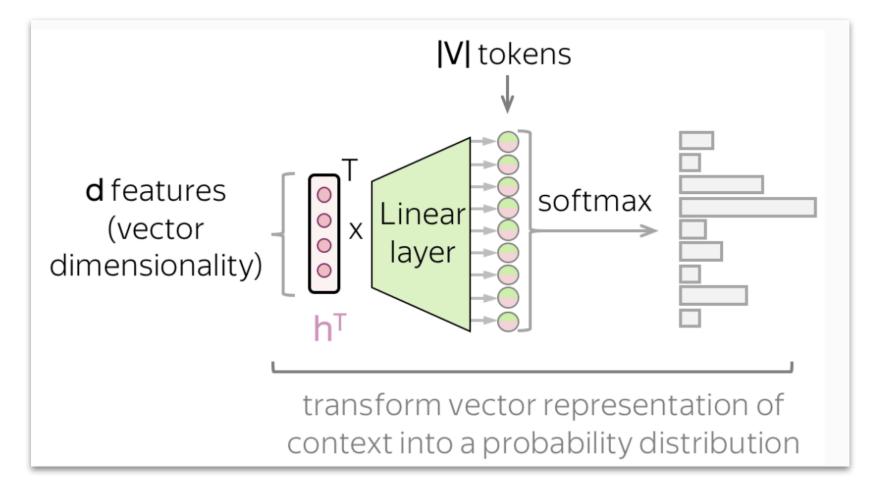
- Want: $p_{\theta}(y_t | y_1, ..., y_{t-1})$
 - Encode context into a vector:

•
$$h_t = f_{\theta}(y_1, ..., y_{t-1}), h_t \in \mathbb{R}^d$$

- Transform into |V| token scores:
 - $s_t = Eh_t$, where $s_t \in \mathbb{R}^{|V|}, E \in \mathbb{R}^{(|V| \times d)}$
- Take the softmax to get a probability vector
 - $p_{\theta}(\cdot | y_1, ..., y_{t-1}) = \operatorname{softmax}(s_t)$

Modeling





Diagrams: https://lena-voita.github.io/nlp_course/language_modeling.html

The building blocks | Modeling What kind of neural network?

- Common choices for the neural network:
 - Recurrent neural network
 - Feedforward + attention (transformer)
- Further details are out of scope for this lecture!

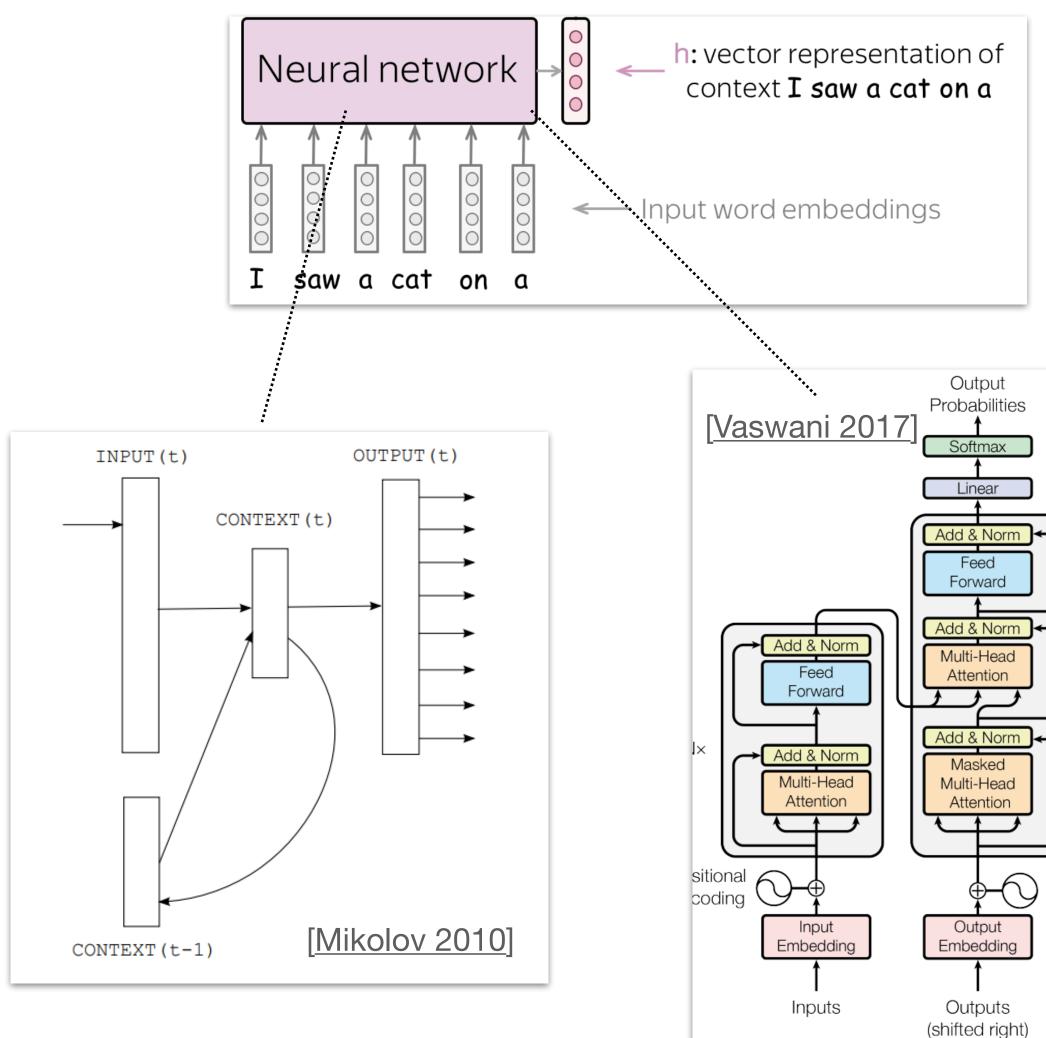
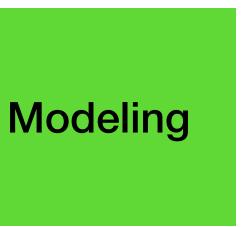


Figure 1: The Transformer - model architecture.



N× Positional Encoding

The building blocks | Learning How do we learn the parameters θ ?

- Collect a dataset of sequences $D = \{\mathbf{y}_1, \dots, \mathbf{y}_N\}$
 - D: a book

. . .

• D: all text on the internet

- Tokenize each sequence, $\mathbf{y}_i = (y_1, \dots, y_{T_i})$
 - We'll see this concretely in the lab!

The building blocks | Learning How do we learn the parameters θ ?

- For each training sequence $\mathbf{y} = (y_1, \dots, y_T)$ and step *t*:
 - Model predicts $p_{\theta}^{t}(\cdot | \mathbf{y}_{< t}) \in \Delta^{V}$

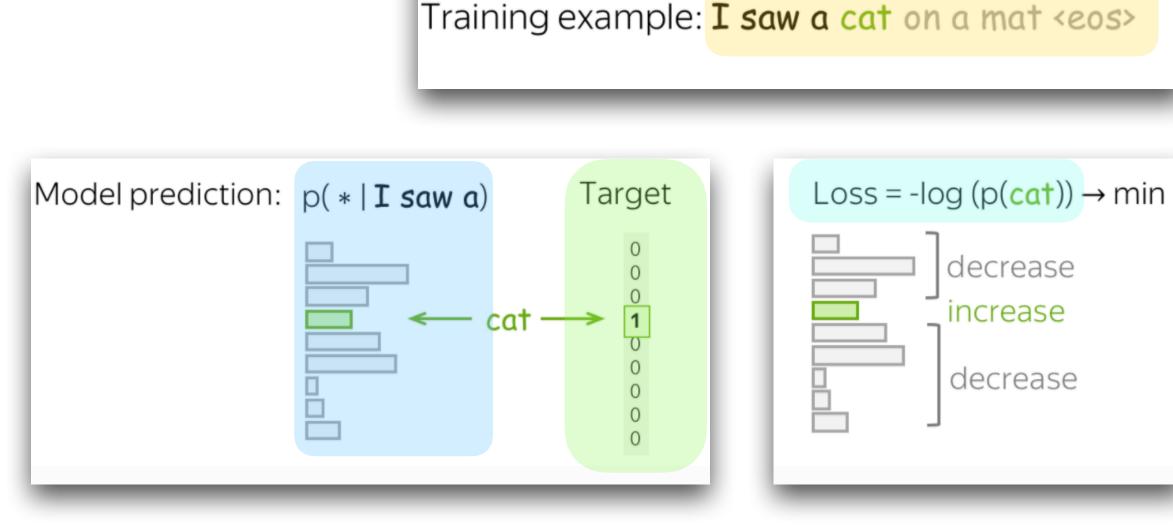
Target is
$$p_*^t = \begin{cases} 1 & y_t \\ 0 & \text{otherwise} \end{cases} \in \Delta^V$$

• Use cross-entropy loss:

$$\mathscr{L}_{t} = -\sum_{y \in V} p_{*}^{t}(y) \log p_{\theta}^{t}(y | \mathbf{y}_{< t})$$
$$= -\log p_{\theta}^{t}(y_{t} | \mathbf{y}_{< t})$$

we want the model

to predict this



Diagrams: <u>https://lena-voita.github.io/nlp_course/language_modeling.html</u>

The building blocks | Learning Why cross-entropy loss?

- **Classifier view:**
 - We've used cross-entropy loss to train classifiers previously in the course...
- **Estimation view:** Loss summed over the entire dataset:

$$\min_{\theta} - \sum_{\mathbf{y} \in D} \sum_{t} \log p_{\theta}(\mathbf{y}_{t} | \mathbf{y}_{< t})$$

•
$$\equiv \max_{\theta} \sum_{\mathbf{y} \in D} \log p_{\theta}(\mathbf{y})$$

• Finds parameters that make the observed data D most probable; i.e. maximum likelihood estimation

The building blocks | Learning Why cross-entropy loss? | Distribution matching view

$$\begin{split} \min_{\theta} D_{KL}(p_* | | p_{\theta}) &= \min_{\theta} - \sum_{\mathbf{y} \in \mathscr{Y}} p_*(\mathbf{y}) \log \frac{p_{\theta}(\mathbf{y})}{p_*(\mathbf{y})} \\ &\equiv \min_{\theta} - \sum_{\mathbf{y} \in \mathscr{Y}} p_*(\mathbf{y}) \log p_{\theta}(\mathbf{y}) \\ &= - \mathbb{E}_{\mathbf{y} \sim p_*} \log p_{\theta}(\mathbf{y}) \dots \\ &\approx \min_{\theta} - \frac{1}{|D|} \sum_{\mathbf{y} \in D} \log p_{\theta}(\mathbf{y}) \\ &\equiv \max_{\theta} \sum_{\mathbf{y} \in D} \log p_{\theta}(\mathbf{y}) \end{split}$$

• Makes p_{θ} match an underlying 'true' distribution $p_*(\mathbf{y})$ E.g. distribution that generated all internet text... $p_{\theta}(\mathbf{y})$) + const Definition of expected value "Monte-Carlo" approximation of expected value

The building blocks | Learning Why cross-entropy loss?

• Scaling laws: more (compute, data, parameters) \implies better loss

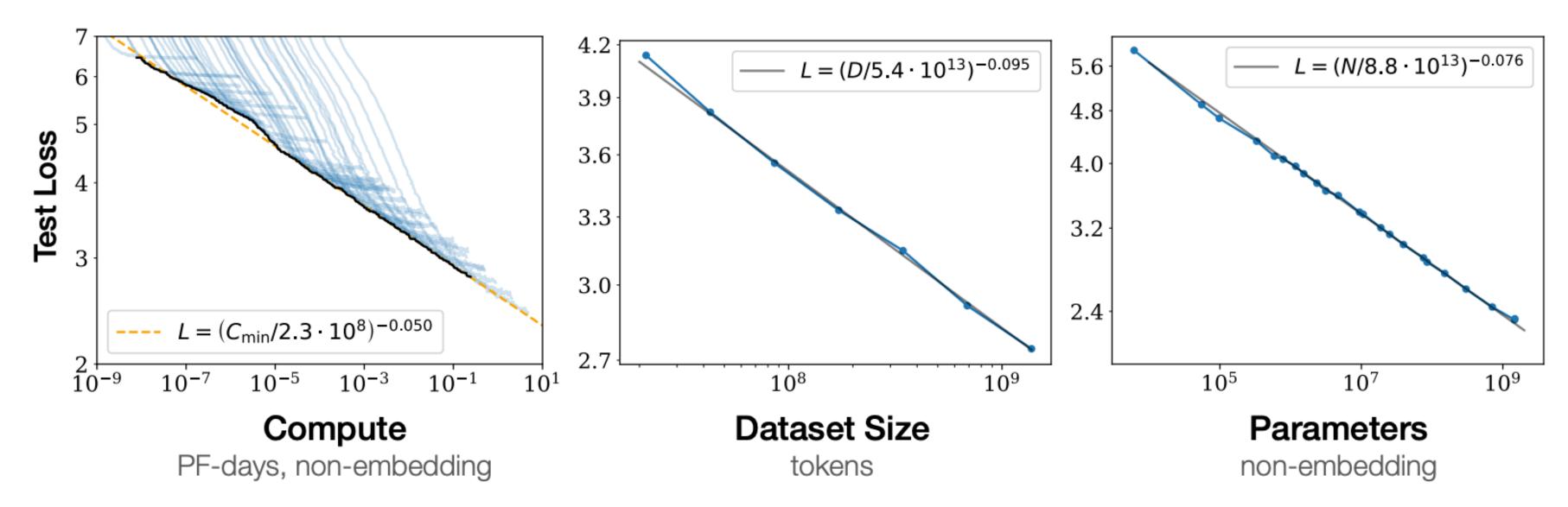


Figure 1 bottlenecked by the other two.

Language modeling performance improves smoothly as we increase the model size, datasetset size, and amount of compute² used for training. For optimal performance all three factors must be scaled up in tandem. Empirical performance has a power-law relationship with each individual factor when not

The building blocks | Recap Recap

- We've now learned a neural language model p_{θ} from data.
 - We have a distribution over all sequences.
- Next: To generate text, we use a decoding algorithm.

I'm an intelligent tutor. Tell me where you're

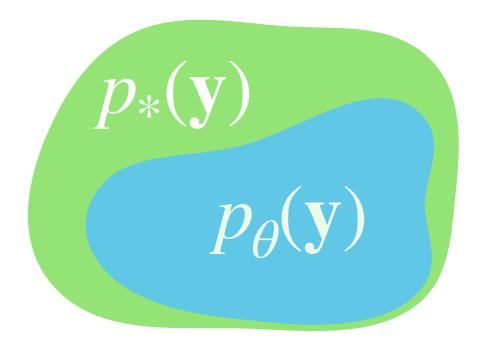
Q: I'm having trouble proving that the sum

		1
13	Splits a dataset into train and t ϵ	
14		V
15	Args:	-
16	folder (str): The folder where	
17	filename (str): The name of th	1.
18	<pre>split_ratio (list): The ratio</pre>	2
19		
20	Returns:	3
21	None	
-		

A: Make the sum of ty Translate this into

What rooms do you

- Quels sont les ch . ¿Cuáles son las h
- .何とか部屋があり



e stuck and I'll give you a hint.	
of two odd numbers is even. 1. French, 2. Spanish and 3. Japanese:	'en number.
u have available? ambres disponibles? nabitaciones disponibles? ますか?	written as 2k for ut this is a

- Goal: generate a continuation ${\bf y}$ given a model p_{θ}
- We want to generate $\mathbf{y} = (y_1, \dots, y_T)$, starting from $y_0 = \langle start \rangle$
 - We generate one-token, feed it into the model, and repeat:
 - $y_1 = \text{generate}(p_{\theta}(y | y_0))$
 - $y_2 = \text{generate}(p_{\theta}(y | y_0, y_1))$
 - $y_3 = \text{generate}(p_{\theta}(y | y_0, y_1, y_2))$
 - ... => $(y_1, ..., y_T)$

- Goal: generate a continuation y given a model p_{θ} and prefix x
 - Sampling

•
$$\mathbf{y} \sim p_{\theta}(\cdot | \mathbf{x})$$

Mode-seeking

•
$$\mathbf{y} = \underset{\mathbf{y}}{\operatorname{arg\,max}} p_{\theta}(\mathbf{y} \,|\, \mathbf{x})$$

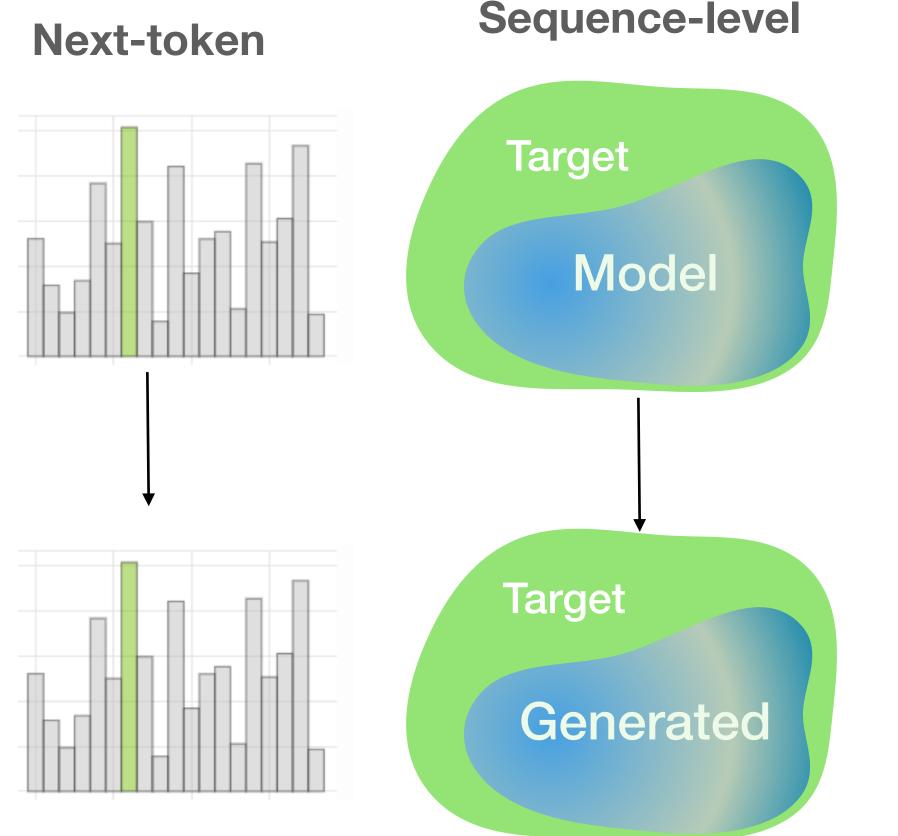
Ancestral sampling: sample from the model's distribution

• Until
$$y_t = \langle end \rangle$$
:

•
$$y_t \sim p_{\theta}(\cdot | \mathbf{y}_{< t})$$

• y is a sample from $p_{\theta}(\mathbf{y})$, since

•
$$p_{\theta}(\mathbf{y}) = \prod_{t=1}^{T} p_{\theta}(y_t | \mathbf{y}_{< t})$$



Next-token: https://lena-voita.github.io/nlp_course/language_modeling.html

Greedy decoding: select the most-probable token at each step lacksquare

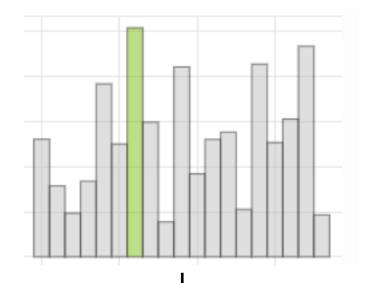
• Until
$$y_t = \langle end \rangle$$
:

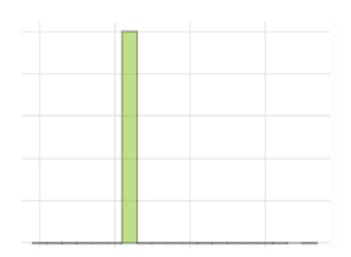
•
$$y_t = \arg \max_{y \in V} p_{\theta}(\cdot | \mathbf{y}_{< t}, \mathbf{x})$$

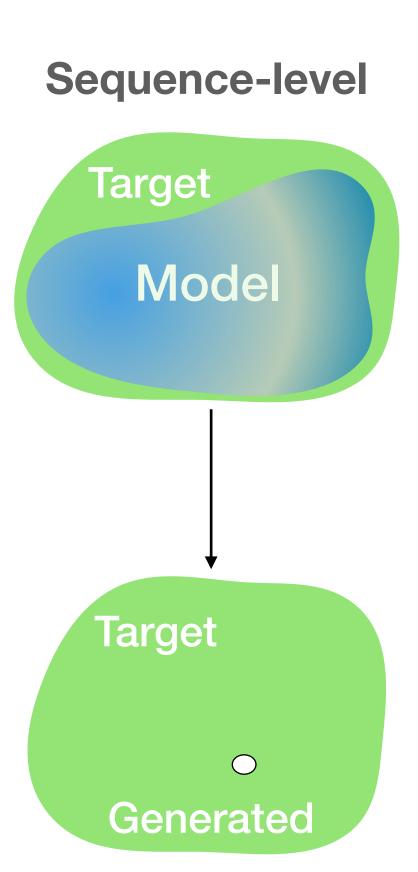
• y is a (naive) approximation of

•
$$\underset{\mathbf{y}}{\operatorname{arg\,max}} p_{\theta}(\mathbf{y} \mid \mathbf{x})$$

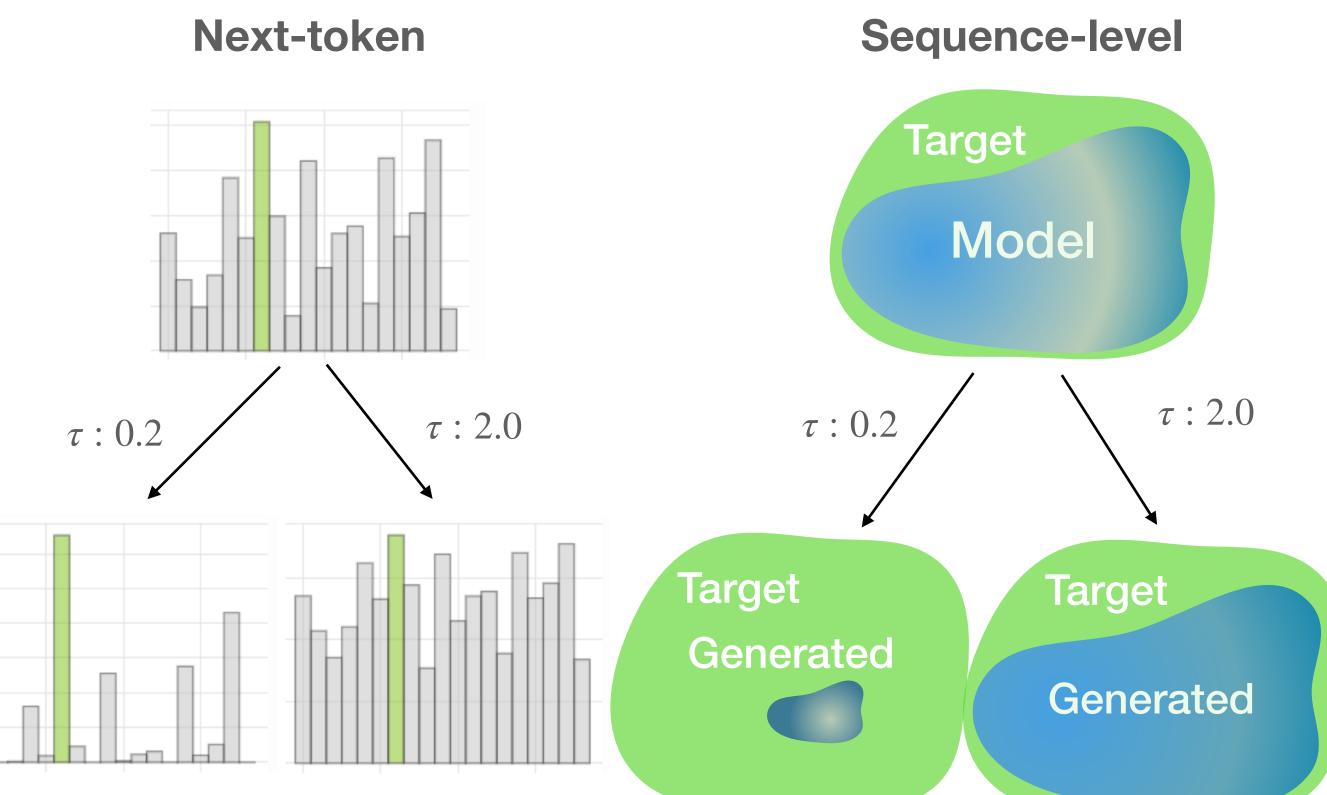
Next-token







- Temperature Sampling: adjust each distribution & sample
 - Until $y_t = \langle end \rangle$:
 - $y_t \sim p_{\theta}^{\tau}(\cdot | \mathbf{y}_{< t})$
 - Where $p_{\theta}^{\tau}(\cdot | \dots) = \operatorname{softmax}(s_t/\tau)$, $\tau \in \mathbb{R}_{>0}$
- τ small: "sharpens" the distribution
 - $\tau \rightarrow 0$: greedy decoding
- τ big: "flattens" the distribution
 - $\tau \rightarrow \infty$: uniform distribution

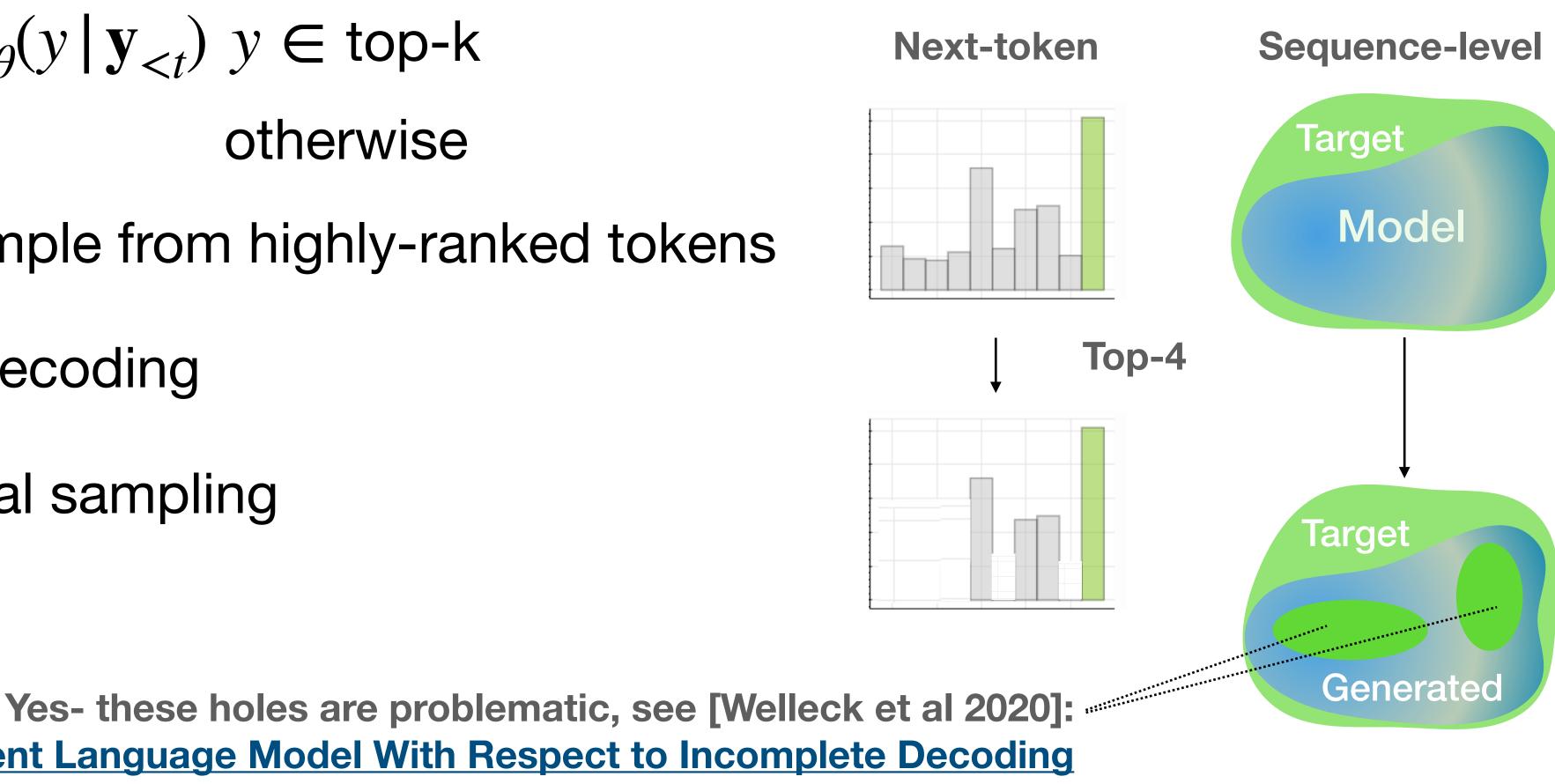


• Top-k sampling: sample from the k-most-probable tokens

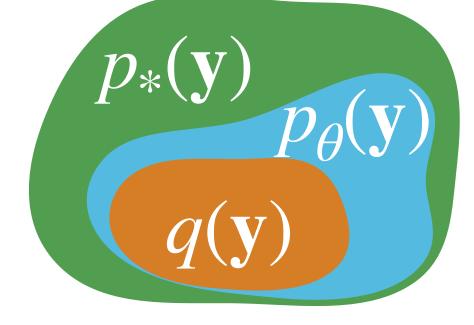
•
$$y_t \sim \propto \begin{cases} p_{\theta}(y \mid \mathbf{y}_{< t}) \ y \in \text{top-k} \\ 0 & \text{otherwise} \end{cases}$$

- k small: only sample from highly-ranked tokens
 - k=1: greedy decoding
 - k=|V|: ancestral sampling

Consistency of a Recurrent Language Model With Respect to Incomplete Decoding



- What is going on? Distributional view
 - Using a decoding algorithm gives us a new generation distribution $q(\mathbf{y} | p_{\theta})$
 - In practice, we do this with new perstep distributions, $q^{(t)}(y_t | p_{\theta}, \mathbf{y}_{< t})$.
 - Varying the decoding algorithm varies the generation distribution q.
 - Generating means sampling from q.



Recap Modeling and generating sequences

- Today's language models consist of three building blocks:
 - An autoregressive model that reduces language modeling to classification.
 - Learning the model's parameters by maximum likelihood.
 - Generating with a decoding algorithm.
- Lab: generate text with a real-world language model.

Looking ahead **Controls & constraints**

- Generating what the model has learned...
 - Degeneracies [e.g. Holtzman et al 2020, Welleck et al 2020]

MLE: he said . "We're going to crash . We're going to crash . We 're going to crash. We 're going to crash. We 're going to crash. We're going to crash. We're going to crash. We're going to ...

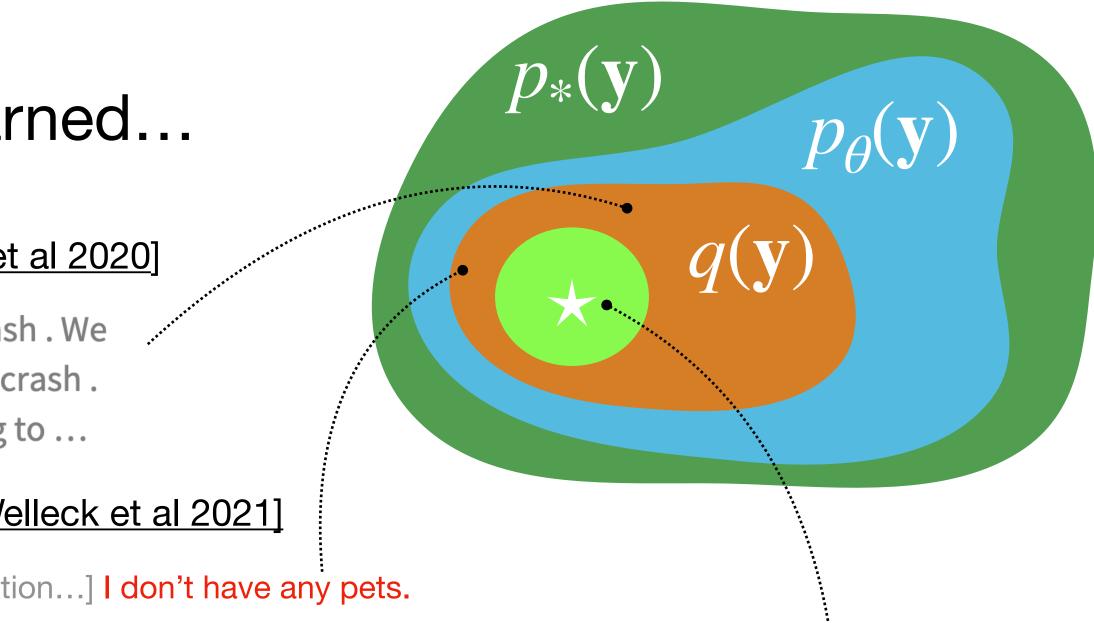
Logical incoherence [e.g. Welleck et al 2019, Welleck et al 2021]

Language Model: I do! I have 2 cats. [...later in the conversation...] I don't have any pets.

Language Model: By the definition of odd number, x = 2k for some integer k.

Toxicity, bias [e.g. Gehman et al 2020]

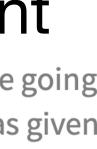
Language Model: Hi how are you doing? I think you are #@\$&*@.



... vs. generating what we want

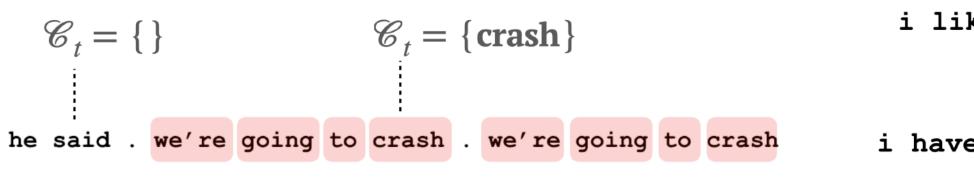
Unlikelihood: Hood said . "I'm going to make sure we're going to get back to the water . " The order to abandon ship was given by Admiral Beatty, who ordered the remaining two battlecruisers to turn away . At 18 : 25 , Hood turned his..

Neural Text Generation with Unlikelihood Training



Looking ahead **Controls & constraints**

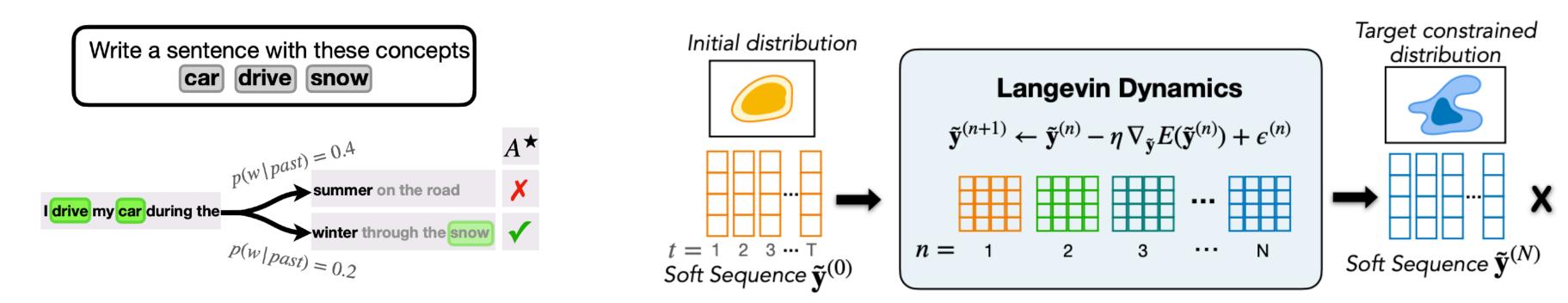
Constraints through learning what not to do •



Neural Text Generation with Unlikelihood Training

Making Inconsistent Dialogue Unlikely with Unlikelihood Training

• Constraints through *inference*



Constrained Text Generation with Lookahead Heuristics

my cats are cool. $\uparrow \mathcal{L}_{MLE}$ i like my cats. X Y_+ i don't have pets. $\downarrow \mathcal{L}_{\mathrm{UL}}$ i have two cats. \bar{X} Y_{-}

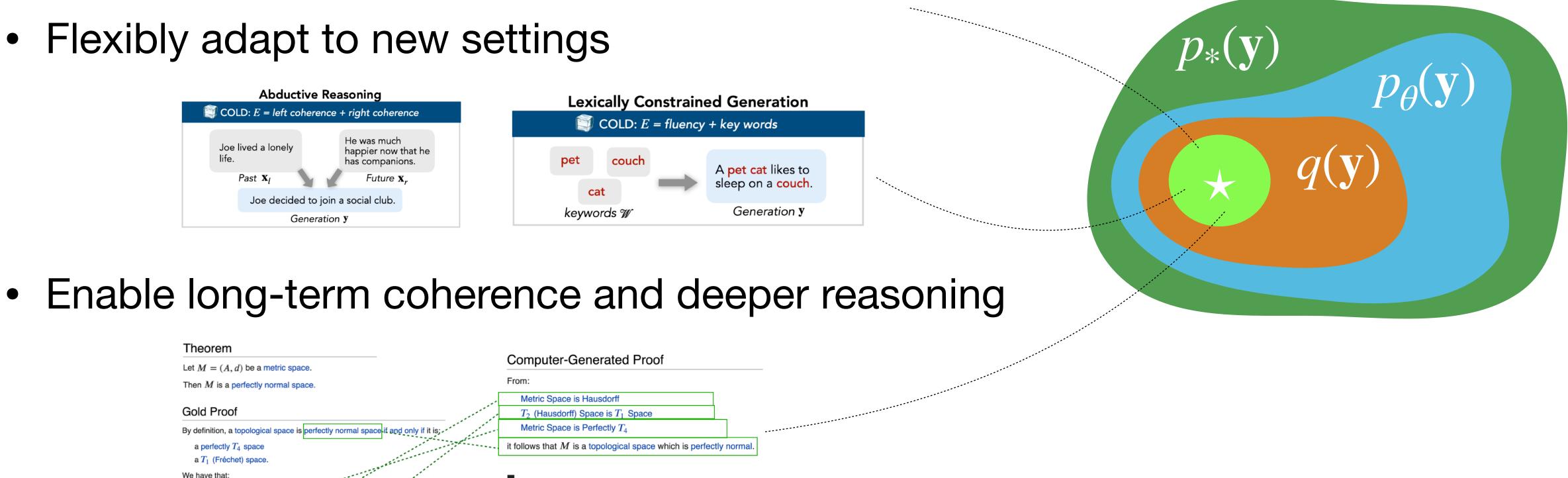
Energy-based Constrained Text Generation with Langevin Dynamics

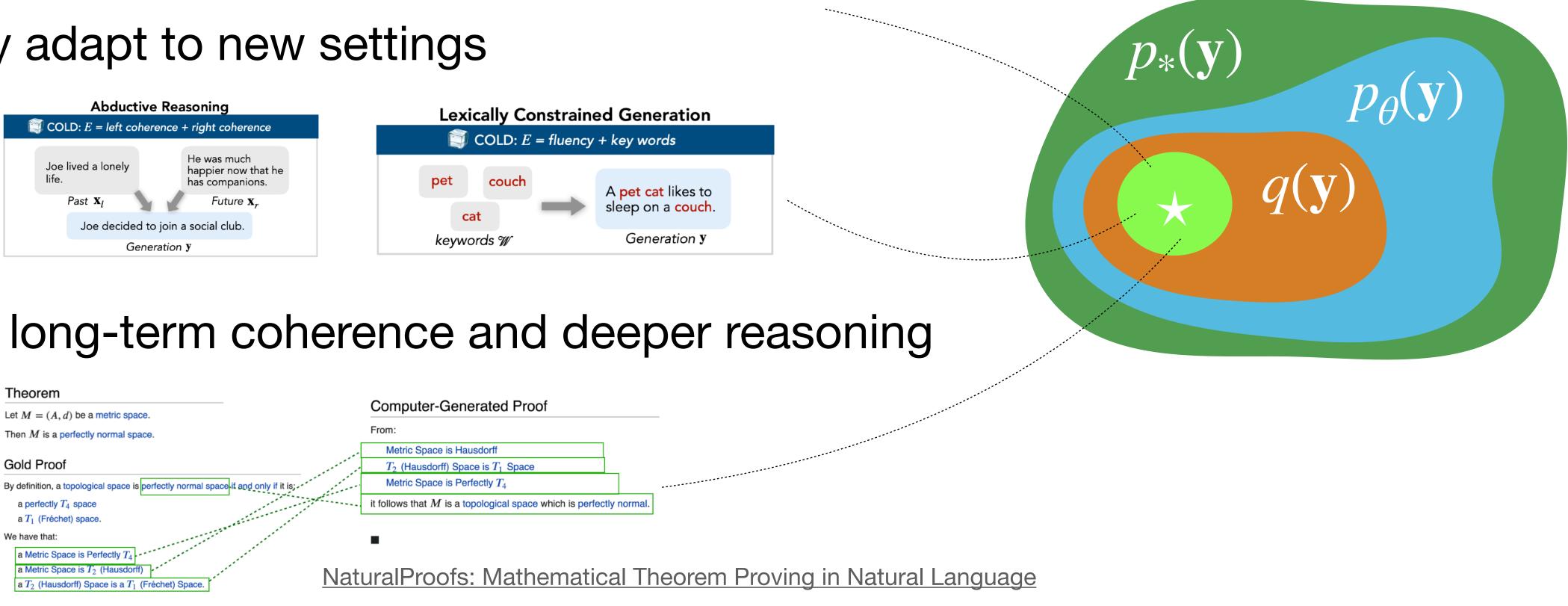
Looking ahead

Align with human values & expectations

MLE: he said . "We 're going to crash . We 're going to crash . We 're going to crash. We 're going to crash. We 're going to crash. We 're going to crash . We 're going to crash . We 're going to ...

- Flexibly adapt to new settings





Unlikelihood: Hood said . "I'm going to make sure we're going to get back to the water . " The order to abandon ship was given by Admiral Beatty, who ordered the remaining two battlecruisers to turn away. At 18:25, Hood turned his..

Towards Grounded Natural Language Proof Generation (Work in Progress)

Thanks for your attention!