
COLD Decoding:
Energy-based Constrained Text Generation with Langevin Dynamics
Lianhui Qin · Sean Welleck · Daniel Khashabi · Yejin Choi

Text generation requires producing text that is not only fluent, but also satisfies different constraints that control the semantics
or style of the generated text.

Minimal Edit

Abductive Reasoning

xl

Joe lived a lonely
life.

xr

Joe decided to join a social club.

He was much happier
now that he has
companions.

Past Future

yGeneration

COLD: = left coherence + right coherenceE

Lexically Constrained Generation

! y

A pet cat likes to
sleep on a couch.

COLD: = fluency + key wordsE

keywords Generation

pet couch

cat

Counterfactual Reasoning
xr

x′ l

xlBeginning

Ending

Counterfactual

The law student

The medical student

joined a prestigious law
firm after graduation.

joined a prestigious
medical practice
after graduating.

yGeneration

COLD: = coherence + minimal editE

Minimal Edit

The dominant approach: fine-tune a pretrained LM with task-specific data

• prohibitively expensive

• can hardly scale to the infinite possible combinations of constraints

This work: constrained generation as sampling from an energy-based model (EBM):
• specify an energy function by plugging in any desired constraint functions

• then sample from the induced energy-based distribution

• No training/finetuning — control on the fly!

Initialization

Langevin Dynamics

…

Target constrained
distribution

1 2 3 N

X

Topk-Mask Masked Sequence

Discrete

Text

n =

…

t = 1 2 3 … T

… … …

Initial distribution

Soft Sequence

Energy-based sampling Discretization

LM

…

ỹ(n+1) ← ỹ(n) − η∇ỹE(ỹ(n)) + ϵ(n)

ỹ(0) ỹ(N) y

x

Soft Sequence

Algorithm 1 Constrained Decoding w/ Langevin Dynamics.
input Constraints {fi}, length T , iterations N .
output Sample sequence y.
ỹ(0)
t init() for all position t // init soft-tokens

for n 2 {1, . . . , N} do
E(n) E(ỹ(n); {fi}) // compute energy (§3.2)
ỹ(n+1)
t ỹ(n)

t � ⌘rỹtE
(n) + ✏(n)

t for all t // update soft tokens (Eq.2)
end for
yt = argmaxv topk-filter

⇣
ỹ(N)
t (v)

⌘
for all t // discretize (Eq.6)

return: y = (y1, . . . , yT)

Soft fluency constraint. Fluency is a common requirement for generated text. To promote fluency, we
use a constraint which favors soft sequences that receive high probability according to the underlying
left-to-right LM p!LM (e.g., GPT2):

f!LM(ỹ) =
XT

t=1

X
v2V

p!LM(v|ỹ<t) log softmax (ỹt(v)) , (3)

where p!LM(·|ỹ<t) means the next-token distribution when providing the neural language model with
the preceding soft tokens ỹ<t (i.e., feeding the weighted average of word embeddings, with the
weights being softmax(ỹt0/⌧) for t0 < t [20, 45]).

Intuitively, the constraint says that each token distribution in the soft sequence, softmax (ỹt), must
match the “reference” distribution p!LM(·|ỹ<t) predicted by the underlying language model. The
match is measured by the (negative) cross-entropy between the two distributions. The constraint thus
encourages fluency. In practice, if there is left-side context x for the generation to condition on, we
feed x to the LM to form the “reference” distribution p!LM(·|ỹ<t,x). As a result, ỹ is encouraged to
be fluent and coherent with the context x.

We can easily incorporate an additional reverse LM constraint, f LM, using a right-to-left LM
p LM(·|ỹ>t), as an additional fluency constraint. Flexibly leveraging multiple models in this way is
infeasible with conventional decoding methods such as beam search or nucleus sampling.

Future-token prediction constraint. Applications such as text infilling involve future input tokens
that remain fixed, but should contribute to updating past positions. For instance, consider updating
the second position of The __ has eight legs. A sample should be coherent with the tokens
xr on the right (i.e., has eight legs).

To this end, we use a constraint that adjusts soft tokens to maximize the likelihood of input tokens xr,

fpred(ỹ;xr) =
XK

k=1
log p!LM(xr,k|ỹ,xr,<k), (4)

where K is the length of xr. In other words, the constraint adjusts the soft sequence ỹ such that the
underlying LM predicts the future tokens xr after seeing ỹ.

N-gram similarity constraint. Many constrained generation scenarios pose requirements on the
wording and expression of generated text sequences. For instance, lexically constrained generation
tasks [18] require certain keywords to be presented in the text samples, while counterfactual reasoning
[44] or text editing [15, 31] tasks require the text to retain the essence of a reference sequence.

We formulate these requirements as an n-gram similarity constraint which favors sequences that
overlap with a reference y⇤ at the n-gram level,

fsim(ỹ;y⇤) = ngram-match(ỹ,y⇤), (5)

where ngram-match(·, ·) is a recent differentiable n-gram matching function [32] which can be
seen as a differentiable approximation to the BLEU-n metric [40]. When n = 1 and y⇤ a sequence of
keywords, the constraint in effect enforces ỹ to assign higher values to the keywords (1-grams). When
n is larger and ỹ⇤ is a reference sequence, the constraint encourages ỹ to resemble the reference by
assigning high values to tokens making up n-grams from y⇤.

3.3 From Soft to Discrete and Fluent Text

After receiving a soft sequence sample ỹ from running Langevin dynamics (Eq. 2), we map the soft
sequence to a discrete text sequence which we consider as the output of COLD decoding. A simple

5

Solution: Use gradient-based MCMC, Langevin dynamics, for efficient sampling!

• continuous relaxation of discrete text: each token is modeled with its logit vector

•

• Discretize the sampled continuous text vector with top-k filtering (see paper for more details)

yt ỹt

Langevin dynamics:

Key challenge of sampling from the text EBM:

• the normalizing factor Z is intractable

• the common discrete MCMC methods (e.g., Gibbs sampling) is too inefficient!

Algorithm of COLD

Illustrations of example differentiable constraints

(),)LM

ỹ<t ỹt

CrossEntropy�

Softmax

p�
LM(� | ỹ<t)

LM

ỹ

has eight legsxr :
never gave up

gave up

ỹ :

2-gram
hand , sink , soup

soup

ỹ :

y* :
1-gram

hand

ҁ1҂ ҁ2҂ ҁ3҂

y* :

Soft MatchSoft Match

Figure 3: Illustrations of the differentiable constraints introduced in §3.2. (1) The soft fluency con-
straint (Eq.3) to encourage fluency of ỹt based on LM probabilities. (2) The future contextualization
constraint in Eq.(4) to encourage coherence w.r.t. the future context (has eight legs). (3)
The n-gram similarity constraint in Eq.(5), where the left figure shows the case of n = 1 which
encourages keywords (e.g., hand) to appear in the generation, and the right figure shows the case of
n > 1 which is typically used to encourage sequence similarity with a reference text y⇤.

The set of constraints induces a distribution over text, written in an energy-based form as:

p(y) = exp
nX

i
�ifi(y)

o
/Z, (1)

where �i � 0 is the weight of the ith constraint, Z is the normalizing factor. Here E(y) :=
�
P

i �ifi(y) is the energy function. This energy-based form is flexible, as one can plug in any
constraint functions required for a task of interest. Generating text under the constraints can then be
seen as sampling from the energy-based distribution y ⇠ p(y). One can also draw multiple samples
and pick the best if only one sample is needed, as discussed later (§3.4).

As mentioned above, for efficient sampling from p(y) we want to use Langevin dynamics, which
makes use of the gradient ryE(y). However, in our case y is a discrete sequence and the gradient
ryE(y) is not well-defined. As a result, we perform Langevin dynamics with an energy defined on
a sequence of continuous token vectors, described below.

Differentiable decoding with Langevin dynamics. Instead of defining the energy function on
discrete tokens, we define the energy function on a sequence of continuous vectors ỹ = (ỹ1, . . . , ỹT),
which we call a soft sequence. Each position in the soft sequence is a vector ỹt 2 RV , where V is
the vocabulary size, and each element ỹt(v) 2 R corresponds to the logit of word v in the vocabulary.
Taking the softmax of ỹt yields a distribution over the vocabulary for position t, p̃⌧

t = softmax(ỹt/⌧).
As ⌧ ! 0, p̃⌧

t becomes a one-hot vector, indicating a discrete token.

By specifying an energy E(ỹ) on the soft sequence ỹ, we can use Langevin dynamics to obtain a
sample. Specifically, the sampling is done by forming a Markov chain:

ỹ(n+1) ỹ(n) � ⌘rỹE(ỹ(n)) + ✏(n), (2)

where ⌘ > 0 is the step size, and ✏(n) 2 N (0,�) is the noise at iteration n. As shown in Welling and
Teh [53], by adding the right amount of noise and annealing the step size, the procedure will converge
to samples from the true distribution. That is, if we let p(n) be the distribution such that ỹ(n) ⇠ p(n),
then as n!1 and � ! 0, we have p(n) ! p(ỹ) := exp{�E(ỹ)}/Z. That is, the procedure ends
up generating samples from the distribution induced by the energy function.

Next, we describe constraint functions defined on the soft sequence ỹ that can be plugged in as
components of the energy function. Later in §3.3, we describe how to obtain a discrete sequence
from a soft sequence sample ỹ.

3.2 A Collection of COLD Constraints

COLD provides a flexible framework for plugging in a wide range of constraint functions for a task of
interest. We describe constraint functions that are useful in various constrained generation problems,
such as those we consider in the experiments (§4). The constraints include language model-based
fluency constraints, along with lexical and semantic constraints on the sequence content. More
generally, any differentiable function that outputs a goodness score of (soft) text can be used as a
constraint function, as long as it reflects the requirements of the target task.

4

Experiment Results

Check out COLD decoding paper!!

(1) fluency constraint (2) future contextualization constraint (3) n-gram similarity constraint

